

AD/ADVANTAGE

MANTIS WebSphere MQ Programming

P39-1365-00

AD/Advantage®
MANTIS WebSphere MQ Programming

Publication Number P39-1365-00

� 2001 Cincom Systems, Inc.
All Rights Reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com/

Release information for this manual
AD/Advantage MANTIS WebSphere MQ Programming, P39-1365-00, is
dated October 30, 2001. This document supports Release 5.5.01 of
MANTIS.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. At your convenience, please take the
survey provided with the online documentation.

Cincom Technical Support for AD/Advantage

All customers Web: http://supportweb.cincom.com
U. S. A. customers Phone: 1-800-727-3525
 FAX: (513) 612-2000

Attn: AD/Advantage Support
 Mail: Cincom Systems, Inc.

Attn: AD/Advantage Support
55 Merchant Street
Cincinnati, OH 45246-3732
U. S. A.

Customers outside U. S. A. All: Visit the support links at
http://www.cincom.com to find
contact information for your nearest
Customer Service Center.

http://supportweb.cincom.com/
http://www.cincom.com/

MANTIS WebSphere MQ Programming v

Contents

About this book ix
Using this document...ix

MANTIS overview..ix
Document organization ... x
Conventions...xi

MANTIS documentation series...xiv
MANTIS for Mainframe documentation series ..xiv
MANTIS for OpenVMS/UNIX documentation seriesxvi
IBM MQSeries documentation series... xvii
Educational material ... xvii

Overview 19
Introduction to WebSphere MQ Programming... 19

Description of WebSphere MQ Programming... 19
Development cycle figure .. 20

Using an Interface layout as a template for your Interface .. 21
Generalized Interface program... 21
MQI and WebSphere MQ Programming .. 22
Reference materials ... 22
Internal Interfaces for MQSeries support ... 23

Fundamental usage 25
Common fields in MQSeries Interface views ... 25

Field naming conventions 29
Field prefixes .. 29

Introduction.. 29
Adding another level of prefixing ... 30

Different kinds of fields, requiring different actions .. 30

Contents

vi P39-1365-00

Errors 31
Each possible error condition or warning condition ..31

Constants 39
Including MQ_INIT in a user program...39
Categories of MQSeries constants in MQ_INIT..40

Building a MANTIS MQSeries application 43
Introduction ...43
Creating programs that use CALLS to the MQSeries Interfaces................................44

Creating a program that reads a message queue ...44
Creating a program that writes to a message queue.....................................45

Initializing Interfaces ...46
Initializing Interfaces that do not require special initialization46
Initializing Interfaces that require special initialization47

Using the MQSeries Interface layouts ..48
Introduction ..48
Using the MQBEGIN Interface to start a unit of work50
Using the MQCOMMIT Interface to establish a sync point and commit all
previous message GETs and PUTs ..52
Using the MQCONNECT Interface to open and connect to an MQSeries
object..54
Using the MQDISCONNECT Interface to close and disconnect from an
MQSeries object ..58
Using the MQEXIT Interface to close all open handles60
Using the MQGET Interface to read an MQSeries message62
Using the MQPUT Interface to send an MQSeries message........................66
Using the MQROLLBACK Interface rollback to a previous sync point and
reverse all previous message GETs and PUTs...70
Using the MQTM Interface to map the MQSeries trigger data to the MANTIS
MQTM Interface ...72

MQSeries/MANTIS triggering 75
General MANTIS trigger considerations ...76

Procedure for using MANTIS as a trigger handler...76
Programs that illustrate the trigger-handling process76
Writing a MANTIS application program to handle the triggered event77
Sample program for sending a message to a trigger queue77
Sample program for handling an MQSeries trigger event77

Contents

MANTIS WebSphere MQ Programming vii

UNIX MQSeries/MANTIS trigger considerations.. 78
The trigger.sh script as a model for your trigger handler 78
Steps required for trigger handling.. 78
Procedure for constructing a trigger handler... 78
MQSeries and MANTIS procedure for handling the triggered event 79

OS/390 MQSeries/MANTIS trigger considerations .. 82
The CSOXTRIG front-end application as a model for your trigger handler .. 82
Steps required for trigger handling.. 82
Procedure for constructing a trigger handler... 83
MQSeries and MANTIS procedure for handling the triggered event 84

MQSeries/MANTIS example programs 87
MQ_INIT ... 88
MQ_SAMPLE ... 88

Uses for MQ_SAMPLE.. 88
Queue used for sending and receiving messages.. 88
UNIX screen shot of MQ_SAMPLE... 89
OS/390 CICS and COMMIT and ROLLBACK functions 89

MQ_HANDLER... 90
Abilities necessary for any handler to possess ... 90
MEMADDR argument to MQ_HANDLER ... 90
Running MQ_HANDLER interactively vs. running it automatically 90

MQ_TRIGGER ... 91
Introduction to MQ_TRIGGER .. 91
MQ_TRIGGER sample output screen... 91
Defining the trigger and associated initiation queue for the MQ_TRIGGER
and the MQ_HANDLER programs .. 92
GETERR(2033) ... 94

MQSeries/MANTIS diagnostic considerations 95
Diagnosing a MANTIS program error... 95
Dumping MQSeries Interface views... 97

Introduction to the “DUMP” value .. 97
UNIX sample of a dumped MQCONNECT Interface 97
Procedure for dumping the failing Interface layout 98
System-specific dump file descriptions ... 99
Dump length .. 100

Contents

viii P39-1365-00

General UNIX and OS/390 considerations 101
Installation considerations...101

UNIX...101
OS/390...102

MQCONNECT ..103
UNIX...103
OS/390...104

MQDISCONNECT ..105
UNIX...105
OS/390...105

MQGET...106
UNIX...106
OS/390...106

MQPUT ...107
UNIX...107
OS/390...107

MQROLLBACK ...108
UNIX...108
OS/390...108

MQCOMMIT..109
UNIX...109
OS/390...109

MQBEGIN ...110
UNIX...110
OS/390...110

MQEXIT ..111
UNIX...111
OS/390...111

MQTM ...112
UNIX...112
OS/390...112

MANTIS WebSphere MQ Programming ix

About this book

Using this document
This guide describes MANTIS WebSphere MQ Programming. This is a
MANTIS feature that adds support for the IBM MQSeries messaging
product. This feature enables MANTIS application programmers to send
MQSeries messages to, and receive MQSeries messages from, any
local or remote machine that supports MQSeries.

MANTIS overview
MANTIS® is an application development system that consists of the
following:

♦ A programming language.

♦ Design facilities. For example:

- Screens

- Files

The MANTIS system is designed to increase your productivity in all
areas of application development, from initial design through production
and maintenance. MANTIS is a part of AD/Advantage, which offers
additional tools for application development.

About this book

x P39-1365-00

Document organization
Below is a summary for each chapter in this guide:

Chapter 1—Overview
Briefly describes WebSphere MQ Programming.

Chapter 2—Fundamental usage
Describes MQSeries initial settings and parameters.

Chapter 3—Field naming conventions
Describes MQSeries field prefixes and kinds of MQSeries fields.

Chapter 4—Errors
Describes MANTIS errors.

Chapter 5—Constants
Describes MQSeries's functions in the MQ_INIT program.

Chapter 6—Building a MANTIS MQSeries application
Describes how you can CALL the MQSeries Interfaces, initialize the
MQSeries Interfaces, and use the MQSeries Interfaces.

Chapter 7—MQSeries/MANTIS triggering
Describes how to use MANTIS as an MQSeries trigger handler.

Chapter 8—MQSeries/MANTIS example programs
Describes the MQ_INIT, MQ_SAMPLE, MQ_HANDLER, and
MQ_TRIGGER programs.

Chapter 9—MQSeries/MANTIS diagnostic considerations
Describes how to diagnose a MANTIS program error and dump
MQSeries Interface views.

Chapter 10—General UNIX and OS/390 considerations
Describes considerations for installation, MQCONNECT,
MQDISCONNECT, MQGET, MQPUT, MQROLLBACK,
MQCOMMIT, MQBEGIN, MQEXIT, and MQTM.

About this book

MANTIS WebSphere MQ Programming xi

Conventions
The following table describes the conventions used in this document.
These conventions will help you identify statements, commands, and
references within the text and software.

Convention Description Example
Constant width
type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Yellow-
highlighted, red
code or screen
text

Indicates an emphasized section of
code or portion of a screen.

00010 ENTRY COMPOUND
00020 .SHOW"WHAT IS THE

CAPITAL AMOUNT?"
00030 .OBTAIN INVESTMENT
00040 EXIT

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing blank.

WRITEPASSb/

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you
can optionally enter a program
name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you
can optionally enter NEXT, PRIOR,
FIRST, or LAST. (NEXT is
underlined to indicate that it is the
default.)

�
�
�
�

�

�

�
�
�
�

�

�

LAST

FIRST

PRIOR

NEXT

About this book

xii P39-1365-00

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

�
�

�
�

�

�
�

�
�

�

LAST

FIRST

begin

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the
system defaults to ON.

[][] �
�
�

�

�

�
�
�

�

�

colrow ,

OFF

ON

 SCROLL

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you
can enter either PRO or
PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you
can enter (A), (A,B), (A,B,C), or
some other argument in the same
pattern.

(argument,...)

About this book

MANTIS WebSphere MQ Programming xiii

Convention Description Example
UPPERCASE Indicates MANTIS reserved words.

You must enter them exactly as
they appear.
The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSE name

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you
can supply a name for the
program.

COMPOSE [program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
; semicolon
' single quotation
mark
" " double quotation
marks

LET ()
() ROUNDED() = v i
i , j n e1 , e2, e3. . .

About this book

xiv P39-1365-00

MANTIS documentation series

MANTIS for Mainframe documentation series
The MANTIS documentation series contains the following guides:

MASTER User tasks

♦ MANTIS Installation, Startup, and Configuration, MVS/ESA, OS/390,
P39-5018

♦ MANTIS Installation, Startup, and Configuration, VSE/ESA, P39-
5019

♦ MANTIS Administration, OS/390, VSE/ESA, P39-5005

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ MANTIS Administration Tutorial, OS/390, VSE/ESA, P39-5027

♦ MANTIS XREF Administration, OS/390, VSE/ESA, P39-0012

Manuals marked with an asterisk (*) are listed twice because you can
use them for multiple tasks.

About this book

MANTIS WebSphere MQ Programming xv

General use

♦ MANTIS Quick Reference, OS/390, VSE/ESA, P39-5003

♦ MANTIS Facilities, OS/390, VSE/ESA, P39-5001

♦ MANTIS Language, OS/390, VSE/ESA, P39-5002

♦ MANTIS Program Design and Editing, OS/390, VSE/ESA, P39-5013

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ AD/Advantage Programming, P39-7001

♦ MANTIS DB2 Programming, OS/390, VSE/ESA, P39-5028

♦ MANTIS SUPRA SQL Programming, OS/390, VSE/ESA, P39-3105

♦ MANTIS XREF, OS/390, VSE/ESA, OpenVMS, P39-0011

♦ MANTIS Entity Transformers, P39-0013

♦ MANTIS DL/I Programming, OS/390, VSE/ESA, P39-5008

♦ MANTIS SAP Facility, OS/390, VSE/ESA, P39-7000

♦ MANTIS WebSphere MQ Programming, P39-1365

♦ MANTIS Application Development Tutorial, OS/390, VSE/ESA, P39-
5026

Manuals marked with an asterisk (*) are listed twice because you can
use them for multiple tasks.

About this book

xvi P39-1365-00

MANTIS for OpenVMS/UNIX documentation series
The MANTIS documentation series contains the following guides:

Getting started

♦ MANTIS 2.8.01 Installation and Startup, OpenVMS/UNIX, P39-0027*

General use

♦ MANTIS Facilities, OpenVMS/UNIX, P39-1300*

♦ MANTIS Language, OpenVMS/UNIX, P39-1310

♦ MANTIS Messages and Codes, OpenVMS/UNIX, P39-1330

♦ MANTIS Application Development Tutorial, OpenVMS/UNIX, P39-
1340

♦ MANTIS SUPRA SQL Programming, OpenVMS/UNIX, P39-1345

♦ AD/Advantage Programming, P39-7001

♦ AD/Advantage MANTIS Entity Transformers, P39-0013

♦ AD/Advantage Component Management Facility, P19-2131

♦ MANTIS Oracle Programming, UNIX, P39-1355

♦ MANTIS DB2 Programming, UNIX, P39-1360

♦ MANTIS WebSphere MQ Programming, P39-1365

Master User tasks

♦ MANTIS Facilities, OpenVMS/UNIX, P39-1300*

♦ MANTIS Administration, OpenVMS/UNIX, P39-1320

♦ MANTIS 2.8.01 Installation and Startup, OpenVMS/UNIX, P39-0027*

Manuals marked with an asterisk (*) are listed twice because you can
use them for multiple tasks.

About this book

MANTIS WebSphere MQ Programming xvii

IBM MQSeries documentation series
MANTIS programmers who are unfamiliar with the MQI interface should
consult the following IBM MQSeries manuals:

♦ MQSeries Application Programming Reference, SC33-1673

♦ MQSeries Application Programming Guide, SC33-0807

♦ MQSeries System Administration, SC33-1873

♦ MQSeries, An Introduction to Messaging and Queuing, GC33-0805

♦ MQSeries Messages, GC33-1876

Educational material
MANTIS educational material is available from your regional Cincom
education department.

About this book

xviii P39-1365-00

MANTIS WebSphere MQ Programming 19

1
Overview

Introduction to WebSphere MQ Programming
This chapter provides a detailed description of MQSeries support, in
order to help you develop a MANTIS application.

Description of WebSphere MQ Programming
WebSphere MQ Programming is a MANTIS feature that adds support for
IBM’s MQSeries messaging product. This feature enables MANTIS
application programmers to send MQSeries messages to, and receive
MQSeries messages from, any local or remote machine that supports
MQSeries.

Cincom has implemented WebSphere MQ Programming differently from
other MANTIS facilities. It is implemented as the following:

♦ A set of Interfaces. These are stored under the MASTER user and
serve as templates.

♦ A generalized Interface program. This program is invoked when a
MANTIS program CALLs one of the Interfaces.

Chapter 1 Overview

20 P39-1365-00

Development cycle figure
Below is a figure representing a typical development cycle that uses
MANTIS and the MQSeries Interface:

MQSeries
Interface
Custom
View(s)

MQSeries

Mantis Application

INTERFACE MQI(
CALL MQI

MQS_ENTRY
Interface Program

CALL

MQSeries
Interface

Template(s)

Copy and
Update

MANTIS

Using an Interface layout as a template for your Interface

MANTIS WebSphere MQ Programming 21

Using an Interface layout as a template for your Interface
The Interface layouts that (along with the generalized Interface program)
make up WebSphere MQ Programming are templates for your
Interfaces. To use an Interface layout as a template, perform the
following:

1. Use the Interface Design Facility Library Functions to fetch the
appropriate Interface template.

2. As appropriate for your application, customize the copy of the
Interface layout

For example, a possible change you can make is to add fields for
user data at the end of the Interface layout.

3. Use Library Functions to save the Interface template under a new
name.

Generalized Interface program
The major component of MQSeries support is a generalized Interface
program. This program is named differently under mainframe CICS and
UNIX:

♦ Mainframe CICS. A CICS transaction called CSOXWMQS.

♦ UNIX. A shared library called libmqs.so. It has an entry point called
MQS_Entry.

Under both mainframe CICS and UNIX, this program performs the
following:

1. Processes the requests from the MANTIS application.

2. Makes the corresponding MQI calls to MQSeries.

Chapter 1 Overview

22 P39-1365-00

MQI and WebSphere MQ Programming
Cincom has modeled WebSphere MQ Programming after the standard
MQSeries API called “MQI.” Application programmers who are familiar
with MQI in either the C or COBOL programming languages will find this
feature to be simple and easy to use.

Reference materials
Programmers who are not familiar with the MANTIS INTERFACE and
MANTIS CALL statements should refer to the following:

♦ For information on Interface design:

- If you use OpenVMS or UNIX—MANTIS Facilities,
OpenVMS/UNIX, P39-1300.

- If you use OS/390 or VSE/ESA—MANTIS Facilities, OS/390,
VSE/ESA, P39-5001.

♦ For information on the CALL and INTERFACE statements:

- If you use OpenVMS or UNIX—MANTIS Language
OpenVMS/UNIX, P39-1310.

- If you use OS/390 or VSE/ESA—MANTIS Language, OS/390,
VSE/ESA, P39-5002.

Internal Interfaces for MQSeries support

MANTIS WebSphere MQ Programming 23

Internal Interfaces for MQSeries support
MANTIS provides the following internal Interfaces for MQSeries support.

These internal Interfaces are located on the MASTER user library.

Interface Description Comments
MQBEGIN Starts a unit of work. ♦ Optional.

♦ Unix only.
MQCOMMIT Establishes a sync point and

ends a unit of work.
♦ Optional.
♦ Unix only.

MQCONNECT Opens an MQSeries object and
connects to it.

♦ This interface requires
special initialization,
performed with the
“INITCONN” function.

♦ Creates a handle that all
other Interfaces use.

MQDISCONNECT Closes an MQSeries object and
disconnects from it.

MQEXIT Closes all open handles. ♦ Optional.
♦ Unix Only.
♦ Only this Interface does not

correspond to an MQSeries
function; this Interface is an
extra Cincom feature.

Chapter 1 Overview

24 P39-1365-00

Interface Description Comments
MQGET Reads an MQSeries message. ♦ The user should perform

the following:
1. Modify the Interface.
2. Save the Interface

under a different name.
♦ This interface requires

special initialization,
performed with the
“INITGET” function.

MQPUT Sends an MQSeries message. ♦ The user should perform
the following:
1. Modify the Interface.
2. Save the Interface

under a different name.
♦ This interface requires

special initialization,
performed with the
“INITPUT” function.

MQROLLBACK Reverse GETs and PUTs back
to a prior sync point or a unit of
work begin.

♦ Optional.
♦ Unix only.

MQTM Retrieves either the MVS
MQTM messages or the UNIX
MQTMC2 Trigger message.

Optional.

MANTIS WebSphere MQ Programming 25

2
Fundamental usage

This chapter provides a detailed discussion of common fields in
MQSeries Interface views. All MQSeries Interface views start with the
same common fields. Although the Interface type may prefix each of
these fields, the order and meaning of the fields remains the same
across all MQSeries Interface layouts.

Common fields in MQSeries Interface views
See the following syntax definition:

CALL mqinterface(function, handle, compcode, reason, ident,
dmplength …)

For explanations of the parameters in this syntax definition, see the rest
of this chapter.

Chapter 2 Fundamental usage

26 P39-1365-00

function

Description Required. The desired operation request.

Format 3–8 character text expression.

Options The allowable function strings are:

♦ “GET”

♦ “PUT”

♦ “BEGIN”*†

♦ “COMMIT”*†

♦ “CONNECT”

♦ “DISCONN”

♦ “ROLLBACK”*†

♦ “DUMP”

♦ “EXIT”*†

♦ “INITPUT”

♦ “INITGET”

♦ “INITCONN”

♦ “INITMQTM”*†

* Unix
† OS/390 CICS

Consideration An invalid function is a function that does not equal one of the strings
listed above (for example, NULL is an invalid function). If the function is
invalid, MANTIS returns an error in the REASON and COMPCODE
fields.

handle
Description Required. The MQSeries handle that MQSeries sets and uses for

subsequent MQI calls.
Format A MANTIS symbolic name, defined as a 32-byte TEXT field.
Consideration Retain this value for subsequent calls.

Common fields in MQSeries Interface views

MANTIS WebSphere MQ Programming 27

compcode

Description Required. The MQSeries compcode, where MQSeries sets a high-level
completion code for the prior CALL.

Format A MANTIS symbolic name, defined as a BIG.

Consideration The MQSeries Interface sets this value to:

♦ 1. Successful.

♦ 2. Warning.

♦ 3. Error.

General Considerations

♦ All Interfaces call the same entry point, which is named
MQS_ENTRY. The FUNCTION field in each Interface points the
MANTIS/MQSeries executable to the appropriate handler.

♦ Prior to making any Interface calls, set all information pertaining to
the call in the Interface layout that includes the following:

- HANDLE (usually)

- FUNCTION

♦ After the call completes, check the Interface symbolic name for an
indication of a warning or error. If the Interface symbolic name
returns a non-NULL value, interrogate the REASON field.

♦ You may connect to multiple MQSeries objects. When you do this,
the called Interface program generates multiple HANDLES (one
HANDLE for each connection). You can disconnect from these
handles by explicitly calling the MQDISCONNECT Interface that has
the corresponding HANDLE and settings. For UNIX users, another
disconnection method is to call the MQEXIT routine that disconnects
the application from all connected objects.

♦ To preserve data integrity, when MANTIS terminates (either normally
or abnormally), MANTIS automatically calls the MQEXIT Interface as
though the Interface was called by the user’s application.

Chapter 2 Fundamental usage

28 P39-1365-00

reason

Description Required. The MQSeries reason code that MQSeries sets. If a non-zero
COMPCODE is returned, the reason field further defines the problem.

Format A MANTIS symbolic name, defined as a BIG.

Consideration For a description of each reason code, refer to MQSERIES Application
Programming Reference, SC33-1673.

ident

Description Internal. The Interface identification field.

Format A MANTIS symbolic name, defined as a BIG.

Consideration This field is used internally to identify the Interface type and requires no
user modification.

dmplength

Description Optional. The length of the Interface layout to dump.

Format A MANTIS symbolic name, defined as a BIG.

Consideration For more information, see “MQSeries/MANTIS diagnostic
considerations” on page 95.

MANTIS WebSphere MQ Programming 29

3
Field naming conventions

Field prefixes

Introduction
For most Interface layouts, many fields within the Interface layout have
the same prefix. For example, in the MQPUT Interface layout, many
fields are prefixed with “MQMD_”. This prefix is precedes the name of
each field in the MQMD structure layout for an MQPUT MQI call to
MQSeries.

You will find many similarly-named fields in MQSeries Interface layouts.
To prevent the automatic mapping feature of MANTIS from reusing these
fields, all fields in all Interface layouts are prefixed to indicate in which
Interface they are contained.

For example, consider the MQPUT Interface layout. Since FUNCTION,
HANDLE, REASON, COMPCODE, IDENT and DMPLENGTH can be
found in all views, these fields are all prefixed with PUT:

♦ PUT_FUNCTION

♦ PUT_HANDLE

♦ PUT_REASON

♦ PUT_COMPCODE

♦ PUT_IDENT

♦ PUT_DMPLENGTH

Chapter 3 Field naming conventions

30 P39-1365-00

Adding another level of prefixing
You can add another level of prefixing in order to keep the functions
separate. To do so, use PREFIX on the INTERFACE statement defining
the Interface layout:
10 INTERFACE QUEUE1("MQPUT1",PASSWORD, PREFIX)

20 INTERFACE QUEUE2("MQPUT2",PASSWORD,PREFIX)

30 QUEUE1_PUT_FUNCTION="CONNECT"

Different kinds of fields, requiring different actions
Although many fields exist in the MQGET and MQPUT Interface views,
you need not set all of these fields prior to the Interface call. This is
because fields that are sent to MQSeries from the MANTIS application
are classified as one of the following:

♦ Inbound field. The MANTIS application programmer must fill in
these fields.

♦ Outbound field. These fields return data to the MANTIS
application. The application may need to interrogate outbound fields.

♦ Inbound/Outbound field. These fields offer 2-way communication.
In some cases, the MANTIS application programmer must fill in
these fields. In other cases, the application may need to interrogate
these fields.

The function that is being performed dictates which fields in the Interface
layout must be set or interrogated. To learn more about which fields
must be set for a given function, refer to MQSERIES Application
Programming Reference Manual, SC33-1673.

MANTIS WebSphere MQ Programming 31

4
Errors

After receiving return from all Interface calls, check the INTERFACE
symbolic variable for error conditions or warning conditions.

Each possible error condition or warning condition
The following table lists each possible error condition or warning
condition (these are named in the “Symbolic name value” column). For
each possible error condition or warning condition, the table lists the
following:

♦ Name of Interface in which this error condition or warning condition
occurs.

♦ Situation in which this error condition or warning condition occurs.

♦ Recommended response to this error condition or warning condition.

For further information on each error condition or warning condition in
the following table, refer to MQSERIES Application Programming
Reference Manual, SC33-1673.

Chapter 4 Errors

32 P39-1365-00

Symbolic
name value

Interface name

Situation

Recommended response

“” All Function
successfully
completes.

None required.

BGNERR
(UNIX only.)

MQBEGIN An error occurs
during the
mqbegin API call
in the MQBEGIN
routine.

Compare the value of the
REASON field in the view
to the value listed in
MQSERIES Application
Programming Reference
Manual, SC33-1673.

BGNWRN
(UNIX only.)

MQBEGIN A warning occurs
during the
mqbegin API call
in the MQBEGIN
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

CLOERR MQDISCONNECT An error occurs
during the mqclose
API call in the
MQDISCONNECT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

CMTERR
(UNIX only.)

MQCOMMIT An error occurs
during the mqcmit
API call in the
MQCOMMIT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

CMTWRN
(UNIX only.)

MQCOMMIT A warning occurs
during the mqcmit
API call in the
MQCOMMIT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

Each possible error condition or warning condition

MANTIS WebSphere MQ Programming 33

Symbolic
name value

Interface name

Situation

Recommended response

CONERR MQCONNECT An error occurs
during the mqconn
API call in the
MQCONNECT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

DMPERR MQDUMP An MQSeries
Interface layout is
dumped. Dump
I/O may have
failed because of
one of the
following:
♦ Output file

could not be
opened.

♦ Data could not
be written out.

♦ The file was
closed
incorrectly.

To find out what you
should do, see
“MQSeries/MANTIS
diagnostic considerations”
on page 95.

DMPINVID MQDUMP An MQSeries
Interface layout is
dumped. You did
not set the
Interface type to a
valid type.

To find out what you
should do, see
“MQSeries/MANTIS
diagnostic considerations”
on page 95.

DMPINVSZ MQDUMP An MQSeries
Interface layout is
dumped. The
Interface type was
not identified and
the DMPLENGTH
field was set to
ZERO.

To find out what you
should do, see
“MQSeries/MANTIS
diagnostic considerations”
on page 95.

Chapter 4 Errors

34 P39-1365-00

Symbolic
name value

Interface name

Situation

Recommended response

DSCERR MQDISCONNECT An error occurs
during the mqdisc
API call in the
MQDISCONNECT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

DSCWRN MQDISCONNECT A warning occurs
during the mqdisc
API call in the
MQDISCONNECT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

GETERR MQGET An error occurs
during the mqget
API call in the
MQGET routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

GETWRN MQGET A warning occurs
during the mqget
API call in the
MQGET routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

Each possible error condition or warning condition

MANTIS WebSphere MQ Programming 35

Symbolic
name value

Interface name

Situation

Response

INVHAN All The Interface
layout supplies an
invalid value of
ZERO in the
HANDLE field.

Perform the following:
1. Correct the HANDLE so

that it matches one of
the values returned by
the MQCONNECT call.

2. Check the spelling of
the HANDLE variable.

3. Ensure that you have
assigned the HANDLE
variable a valid handle
value.

INVHANDL All The Interface
layout supplies an
invalid NONZERO
value in the
HANDLE field.
This may be the
result of one of the
following:
♦ A handle was

closed and
disconnected.

♦ The program
modified the
variable holding
the handle.

Correct the HANDLE so
that it matches one of the
values returned by an
MQCONNECT call.

Chapter 4 Errors

36 P39-1365-00

Symbolic
name value

Interface name

Situation

Recommended response

INVREQ All The Interface
layout supplies an
invalid value in the
FUNCTION field.

Correct the FUNCTION
field so that it contains one
of the following values:
♦ GET

♦ PUT

♦ BEGIN

♦ COMMIT

♦ CONNECT

♦ DISCONN

♦ ROLLBACK

♦ DUMP

♦ EXIT

♦ INITPUT

♦ INITGET

♦ INITCONN

♦ INITMQTM
MEMFAIL1 MQCONNECT Memory chains

within the MANTIS
process are
corrupt during the
MQCONNECT
routine call to
acquire memory
for internal
purposes.

(This error should never
occur but has been
documented for
completeness.) Document
the problem and contact
Cincom’s technical
support.

MEMFAIL2 MQCONNECT Memory chains
within the MANTIS
process are
corrupt during the
MQCONNECT
routine call to
acquire memory
for internal
purposes.

(This error should never
occur but has been
documented for
completeness.) Document
the problem and contact
Cincom’s technical
support.

Each possible error condition or warning condition

MANTIS WebSphere MQ Programming 37

Symbolic
name value

Interface name

Situation

Recommended response

MQTMCERR
(UNIX only.)

MQTM The call to the
MQTM Interface is
made, but the
MQTMC2
environment
variable is not set.

Correct the process that is
invoked to handle the
message that invoked the
trigger. This process must
pass the MQTMC2 record
to MANTIS by setting the
record in the MQTMC2
environment variable
before MANTIS is
executed. For more
information, see
“MQSeries/MANTIS
triggering” on page 75.

MQTMERR
(OS/390 only.)

MQTM The call to the
MQTM Interface is
made, but the
TM_MEMADDR
field in the
Interface layout is
not set to a valid
memory address
containing the
MQSeries MQTM
record.

To find out what you
should do, see
“MQSeries/MANTIS
triggering” on page 75.

NOTAUTH
(OS/390 only.)

All The MANTIS
program attempts
to access the
MQSeries
Interface, but has
not been
authorized to do
so.

Verify that the password on
the INTERFACE statement
matches the password in
the Interface design. For
more information, contact
your Master User.

OPNERR MQCONNECT An error occurs
during the mqopen
API call in the
MQCONNECT
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

Chapter 4 Errors

38 P39-1365-00

Symbolic
name value

Interface name

Situation

Recommended response

PUTERR MQPUT An error occurs
during the mqput
API call in the
MQPUT routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

PUTWRN MQPUT A warning occurs
during the mqput
API call in the
MQPUT routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

RBKERR
(UNIX only.)

MQROLLBACK An error occurs
during the mqback
API call in the
MQROLLBACK
routine.

Compare the value of the
REASON field in the
Interface layout to the
value listed in MQSERIES
Application Programming
Reference Manual,
SC33-1673.

MANTIS WebSphere MQ Programming 39

5
Constants

MQSeries’s many capabilities and options result in the availability of
numerous constants for use in MQSeries’s various functions. Cincom
has duplicated these constants into a program called MQ_INIT, which is
located under the MASTER user.

Including MQ_INIT in a user program
Include MQ_INIT in any user program by performing one of the following:

♦ Copying all or part of MQ_INIT into your program during editing.

♦ Including MQ_INIT in your program as a COMPONENT.

Chapter 5 Constants

40 P39-1365-00

Categories of MQSeries constants in MQ_INIT
MQ_INIT contains the categories of MQSeries constants that are listed in
the following table.

Category of MQSeries
constants

Description

Completion Codes Constants that can be used with any Interface to test the
value of the COMPCODE field for normal, warning, and
error statuses.

MQCLOSE Options Constants defining options in the MQDISCONNECT
Interface that can be used during the CLOSE of an
MQSeries object.

MQGMO Constants for
GET

Constants that can be used in the MQGET Interface and
consist of the following:
♦ MQGMO Get Message Options
♦ Match Options
♦ Group Status
♦ Segment Status
♦ Segmentation and Expiry

Categories of MQSeries constants in MQ_INIT

MANTIS WebSphere MQ Programming 41

Category of MQSeries
constants

Description

MQMD Constants for PUT Constants that can be used in the MQPUT Interface and
consist of the following:
♦ Structure ID

♦ Version number

♦ Report Options

♦ Message Type

♦ Feedback Values

♦ Encoding Values

♦ Coded Character

♦ Set Identifiers

♦ Format Values

♦ Priority Values

♦ Persistence Values

♦ Message Identifier Values

♦ Message Correlation Identifier

♦ Put Application Types

♦ Put Message Flags

MQOPEN Object Type
Definitions

Constants that define the object type being opened and
used in the MQCONNECT Interface.

MQPMO Constants for PUT Constants that can be used in the MQPUT Interface and
consist of the following:
♦ MQPMO Version Number

♦ MQPMO Structure Length

♦ MQPMO Put-Message Options

♦ MQPMO Message Record Fields

Reason Codes Constants that can be used with any Interface to test the
value of the REASON field for any of the errors generated
by MQSeries.

Chapter 5 Constants

42 P39-1365-00

MANTIS WebSphere MQ Programming 43

6
Building a MANTIS MQSeries
application

Introduction
This chapter describes how to perform the following:

♦ Create programs that use CALLs to the MQSeries Interfaces.
See “Creating programs that use CALLS to the MQSeries Interfaces”
on page 44.

♦ Initialize the MQSeries Interfaces. See “Initializing Interfaces” on
page 46.

♦ Use the MQSeries Interfaces. See “Using the MQSeries Interface
layouts” on page 48.

Chapter 6 Building a MANTIS MQSeries application

44 P39-1365-00

Creating programs that use CALLS to the MQSeries Interfaces

Creating a program that reads a message queue
To create a program that reads a message queue, perform the following:

1. Define your message layouts to MANTIS. To accomplish this,
perform the following:

A. On the MANTIS Facility Selection Menu, select the Design an
Interface option.

B. Load the MQGET Interface design template.

C. Add your message data fields to the end of the Interface layout.

D. Save the new Interface description under a different name.

E. If your program will be reading more than one message layout,
repeat steps B–D.

2. Write a program that contains the following structure for your
application logic and your Interface CALLs:

Pseudo-code Comment
MQCONNECT
MQINITGET
MQBEGIN Your program may or may not require this Interface CALL.
Loop

MQGET
MQCOMMIT or MQROLLBACK Your program may or may not require this Interface CALL.

Endloop
MQDISCONNECT or MQEXIT

Creating programs that use CALLS to the MQSeries Interfaces

MANTIS WebSphere MQ Programming 45

Creating a program that writes to a message queue
To create a program that writes to a message queue, perform the
following:

1. Define your message layouts to MANTIS. To accomplish this,
perform the following:

A. On the MANTIS Facility Selection Menu, select the Design an
Interface option.

B. Load the MQPUT Interface design template.

C. Add your message data fields to the end of the Interface layout.

D. Save the new Interface description under a different name.

E. If your program will be reading more than one message layout,
repeat steps B–D.

2. Write a program that contains the following structure for your
application logic and your Interface CALLs:

Pseudo-code Comment
MQCONNECT
MQINITPUT
MQBEGIN Your program may or may not require this Interface CALL.
Loop

MQPUT
MQCOMMIT or MQROLLBACK Your program may or may not require this Interface CALL.

Endloop
MQDISCONNECT or MQEXIT

Chapter 6 Building a MANTIS MQSeries application

46 P39-1365-00

Initializing Interfaces

Initializing Interfaces that do not require special initialization
Use the CLEAR statement to initialize Interfaces that do not require
special initialization. These Interfaces are:

♦ MQBEGIN

♦ MQCOMMIT

♦ MQDISCONNECT

♦ MQEXIT

♦ MQROLLBACK

♦ MQTM

How to use the CLEAR statement to initialize an Interface
To use the CLEAR statement, place it on a program line, followed by an
Interface name. Below is sample code that includes the CLEAR
statement and an Interface name:
10 INTERFACE MQCOMMIT("MASTER:MQCOMMIT",PASSWORD)

...

1000 CLEAR MQCOMMIT

1010 COM_FUNCTION="COMMIT"

1020 COM_HANDLE=SAVE_HANDLE1

1030 CALL MQCOMMIT

What the CLEAR statement does
When the program executes the CLEAR statement, the CLEAR
statement performs the following:

1. Clears all fields in the Interface.

2. Sets all TEXT fields in the Interface to NULL.

3. Sets all numeric fields in the Interface to ZERO.

When you execute the CLEAR statement, fields defined in the Interface
have initial values of NULL or ZERO. This follows normal MANTIS rules.
The exception occurs when you auto-map fields to variables to which
you have already assigned values.

Initializing Interfaces

MANTIS WebSphere MQ Programming 47

Initializing Interfaces that require special initialization
Use CALLs to special functions in order to initialize Interfaces that
require special initialization. These Interfaces are:

♦ MQCONNECT. Call the INITCONN function to initialize this
Interface layout. See “Initializing the MQCONNECT Interface” on
page 55.

♦ MQGET. Call the INITGET function to initialize this Interface layout.
See “Initializing the MQGET Interface to its default usable state” on
page 64.

♦ MQPUT. Call the INITPUT function to initialize this Interface layout.
See “Initializing the MQPUT Interface to its default usable state” on
page 68.

For information on the default state for each of these Interface layouts,
refer to MQSERIES Application Programming Reference Manual, SC33-
1673.

Sample code for initializing an Interface that requires special
initialization
Below is sample code for specifying the INITPUT function (used for
initializing the MQPUT Interface layout):
10 INTERFACE QUEUE1("MQPUT1",PASSWORD)

20 CALL QUEUE1("INITPUT")

30 IF PUT_COMPCODE<>ZERO

40 .DO ERROR_ROUTINE

50 END

Chapter 6 Building a MANTIS MQSeries application

48 P39-1365-00

Using the MQSeries Interface layouts

Introduction
The MQSeries Interface layouts, which are described in this section, are
designed for use with the MQSeries Interface program. They are located
in the MASTER library

These Interface layouts are listed in the following table:

For information on using these Interface layouts in programs, see
“Creating programs that use CALLS to the MQSeries Interfaces” on
page 44.

Interface layout
name

Description

Used
as-is?

Requires
special
initialization?

Comments

MQBEGIN Starts a unit of
work.

Yes No N/A

MQCOMMIT Commits
messages that
were sent and
received during a
unit of work.

Yes No N/A

MQCONNECT Opens and
connects to an
MQSeries object.

Yes Yes Returns handle
for use on other
Interfaces.
Note: Requires
special
initialization prior
to its use
(“INITCONN”).

MQDISCONNECT Closes and
disconnects from
an MQSeries
object.

Yes No N/A

MQEXIT Closes all open
handles.

Yes No N/A

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 49

Interface name

Description

Used
as-is?

Requires
special
initialization?

Comments

MQGET Reads an
MQSeries
message.

No Yes To modify this
Interface,
perform the
following:
1. Copy this

Interface.
2. Add your

message
data layout to
the end of the
copy.

Note: Requires
special
initialization prior
to its use
(“INITGET”).

MQPUT Sends an
MQSeries
message.

No Yes To modify this
Interface,
perform the
following:
1. Copy this

Interface.
2. Add your

message
data layout to
the end of the
copy.

Note: Requires
special
initialization prior
to its use
(“INITPUT”).

MQROLLBACK Resets rollback to
prior synch point.

Yes No N/A

MQTM Maps the
MQSeries trigger
data.

Yes No N/A

Chapter 6 Building a MANTIS MQSeries application

50 P39-1365-00

Using the MQBEGIN Interface to start a unit of work
The MQBEGIN Interface enables the user program to start a unit of
work, as defined by MQSeries and its mqbegin API.

Changing the MQBEGIN Interface layout
Altering data already present in this Interface layout. Do not change
this Interface layout. Doing so will corrupt the Interface and will result in
the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQBEGIN Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQBEGIN 07:53:57
Element Count : 6 Element Size : 56
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 BEG_FUNCTION TEXT TEXT 8
2 BEG_HANDLE TEXT TEXT 32
3 BEG_COMPCODE BIG BINARY 4
4 BEG_REASON BIG BINARY 4
5 BEG_IDENT BIG BINARY 4
6 BEG_DMPLENGTH BIG BINARY 4

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 51

Initializing the MQBEGIN Interface
Special initialization. This Interface does not require special
initialization before you can use it.

Initialization procedure. To initialize this Interface, perform the
following:

1. Set BEG_HANDLE to a valid handle returned by the MQCONNECT
Interface.

2. Set BEG_FUNCTION to the string value “BEGIN”.

Sample code. See the following sample code for examples of setting
BEG_HANDLE and BEG_FUNCTION:
230 INTERFACE MQBEGIN("MASTER:MQBEGIN",PASSWORD)

240 BEG_FUNCTION="BEGIN"

250 BEG_HANDLE=SAVE_HANDLE1

260 CALL MQBEGIN

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQBEGIN Interface.

2. Sets the required fields (BEG_FUNCTION and BEG_HANDLE).

3. Calls the Interface to begin a unit of work based on the object
pointed to by the HANDLE that was returned by a previous
MQCONNECT (CON_HANDLE or another variable assigned its
value).

MQBEGIN Interface and OS/390 Transaction Server
MQBEGIN is not supported in OS/390 Transaction Server. In OS/390
Transaction Server, transaction support of MQSeries messages falls
under normal MANTIS transaction guidelines.

Chapter 6 Building a MANTIS MQSeries application

52 P39-1365-00

Using the MQCOMMIT Interface to establish a sync point and
commit all previous message GETs and PUTs

The MQCOMMIT Interface enables you to establish a sync point and to
commit all previous message GETs and PUTs in the manner that
MQSeries and its mqcmit API define.

Changing the MQCOMMIT Interface layout
Altering data already present in this Interface layout. Do not change
this Interface layout. Doing so will corrupt the Interface and will result in
the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQCOMMIT Interface area layout figure
The Interface area layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQCOMMIT 07:54:44
Element Count : 6 Element Size : 56
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 COM_FUNCTION TEXT TEXT 8
2 COM_HANDLE TEXT TEXT 32
3 COM_COMPCODE BIG BINARY 4
4 COM_REASON BIG BINARY 4
5 COM_IDENT BIG BINARY 4
6 COM_DMPLENGTH BIG BINARY 4

4

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 53

Initializing the MQCOMMIT Interface
Special initialization. This Interface does not require special
initialization before you can use it.

Initialization procedure. To initialize this Interface, perform the
following:

1. Set COM_FUNCTION to the string value “COMMIT”.

2. Set COM_HANDLE to a valid handle that was returned by the
MQCONNECT Interface.

Sample code. See the following sample code:
230 INTERFACE MQCOMMIT("MASTER:MQCOMMIT",PASSWORD)

240 COM_FUNCTION="COMMIT"

250 COM_HANDLE=SAVE_HANDLE1

260 CALL MQCOMMIT

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQCOMMIT Interface.

2. Sets the required fields (COM_FUNCTION and COM_HANDLE).

3. Calls the Interface, in order to establish a sync point based on the
object that is pointed to by the HANDLE that was returned by a
previous MQCONNECT (CON_HANDLE).

MQCOMMIT and OS/390 Transaction Server
MQCOMMIT is not supported in OS/390 Transaction Server. In OS/390
Transaction Server, transaction support of MQSeries messages falls
under normal MANTIS transaction guidelines.

Chapter 6 Building a MANTIS MQSeries application

54 P39-1365-00

Using the MQCONNECT Interface to open and connect to an
MQSeries object

The MQCONNECT Interface enables the user program to open and
connect to an MQSeries object via the mqconn and mqopen APIs.

Changing the MQCONNECT Interface layout
Altering data already present in this Interface layout. Do not change
this Interface layout. Doing so will corrupt the Interface and will result in
the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQCONNECT Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2000/11/26
MASTER:MQCONNECT 19:05:14
Element Count : 12 Element Size : 220
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 CON_FUNCTION TEXT TEXT 8
2 CON_HANDLE TEXT TEXT 32
3 CON_COMPCODE BIG BINARY 4
4 CON_REASON BIG BINARY 4
5 CON_IDENT BIG BINARY 4
6 CON_DMPLENGTH BIG BINARY 4
7 CON_QMGRNAME TEXT TEXT 48
8 CON_OPTIONS BIG BINARY 4
9 MQOD_OBJECTTYPE BIG BINARY 4
10 MQOD_OBJECTNAME TEXT TEXT 48
11 MQOD_OBJECTQMGRNAME TEXT TEXT 48
12 MQOD_ALTERNATEUSERID TEXT TEXT 12

For information on elements 7–12 in the preceding figure, refer to
MQSeries Application Programming Reference, SC33-1673. These
elements are:
♦ QMGRNAME

♦ OPTIONS

♦ OBJECTTYPE

♦ OBJECTNAME

♦ OBJECTQMGRNAME

♦ ALTERNATEUSERID

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 55

Initializing the MQCONNECT Interface
Special initialization. This Interface requires special initialization—that
is, before you can use this Interface, you must call a special function in
order to initialize the Interface to its default usable state.

Initialization steps. Accomplish the special initialization by performing
the following:

1. Place the “INITCONN” string in the FUNCTION field.

2. Call the MQCONNECT Interface.

To review the settings for the default state of mqconn, refer to
MQSERIES Application Programming Reference Manual, SC33-1673.
Once the INITCONN function initializes the mqconn to its default values,
the application can change them prior to calling the MQCONNECT
Interface to connect and open the MQSeries object.

Sample code. See the following sample code for examples of placing
the INITCONN string in the FUNCTION field and calling the
MQCONNECT Interface:
10 INTERFACE MQCONNECT("MASTER:MQCONNECT",PASSWORD)

15 CON_FUNCTION = "INITCONN"

20 CALL MQCONNECT

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQCONNECT Interface.

2. Sets the required field (CON_FUNCTION).

3. Calls the MQCONNECT Interface.

Chapter 6 Building a MANTIS MQSeries application

56 P39-1365-00

Connecting to the MQSeries object
Connection procedure. To open the MQSeries object and connect to
it, perform the following:

1. Change the CON_FUNCTION to “CONNECT.”

2. Call the INTERFACE.

Sample code. See the following sample code:
25 CON_FUNCTION = "CONNECT"

30 CALL MQCONNECT

Description of sample code. The above MANTIS program performs
the following:

1. Sets the required field (CON_FUNCTION).

2. Calls the MQCONNECT Interface.

Once the MQCONNECT call returns successfully, CON_HANDLE
contains a value to use for all input and output to that object.

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 57

Using the same MQCONNECT Interface to open multiple
objects
Connection procedure. To use the same MQCONNECT Interface to
open multiple objects, perform the following:

1. Save the CON_HANDLE in another TEXT variable for a length of 32
(for example, SAVE_HANDLE1).

2. Reinitialize the Interface with a CALL using function INITCONN.

3. Call the MQCONNECT Interface.

Sample code. See the following sample code:
10 INTERFACE MQCONNECT("MASTER:MQCONNECT, PASSWORD)

20 TEXT SAVE_HANDLE1(32)

30 TEXT SAVE_HANDLE2(32)

40 CON_FUNCTION="INITCONN"

50 CALL MQCONNECT

60 CON_FUNCTION="CONNECT"

70 CALL MQCONNECT

80 SAVE_HANDLE1=CON_HANDLE

90 CON_FUNCTION="INITCONN"

100 CALL MQCONNECT

110 CON_FUNCTION="CONNECT"

120 CALL MQCONNECT

130 SAVE_HANDLE2=CON_HANDLE

Comment on the preceding code. When dealing with queues, you
may want to have multiple contexts in order to establish different
currencies. For example, the same queue can be opened multiple times
in a program:

♦ Opened once for browsing

♦ Opened once for destructive reading

♦ Opened once for writing

You can use the same MQCONNECT Interface and save separate
handles to each connection.

Chapter 6 Building a MANTIS MQSeries application

58 P39-1365-00

Using the MQDISCONNECT Interface to close and disconnect
from an MQSeries object

The MQDISCONNECT Interface enables the user program to close and
disconnect from an MQSeries object via the mqclose and mqdisc APIs.

Changing the MQDISCONNECT Interface layout
Altering data already present in this Interface layout. Do not change
this Interface layout. Doing so will corrupt the Interface and will result in
the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQDISCONNECT Interface area layout figure
The Interface area layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQDISCONNECT 07:48:33
Element Count : 7 Element Size : 60
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 DIS_FUNCTION TEXT TEXT 8
2 DIS_HANDLE TEXT TEXT 32
3 DIS_COMPCODE BIG BINARY 4
4 DIS_REASON BIG BINARY 4
5 DIS_IDENT BIG BINARY 4
6 DIS_DMPLENGTH BIG BINARY 4
7 DIS_OPTIONS BIG BINARY 4

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 59

Initializing the MQDISCONNECT Interface
Special initialization. This Interface does not require special
initialization before you can use it.

Initialization procedure. To initialize this Interface, perform the
following:

1. Set DIS_FUNCTION to the string value of “DISCONNECT.”

2. Set DIS_HANDLE to a valid handle returned by the MQCONNECT
Interface.

3. Set DIS_OPTIONS to any needed disconnect options.

Sample code. See the following sample code:
100 INTERFACE MQDISCONNECT("MASTER:MQDISCONNECT", PASSWORD)

110 DIS_FUNCTION="DISCONNECT"

120 DIS_HANDLE=SAVE_HANDLE1

130 CALL MQDISCONNECT

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQDISCONNECT Interface.

2. Sets the required fields.

3. Calls the Interface, in order to close and disconnect the MQSeries
object pointed to by the HANDLE that was returned by a previous
MQCONNECT.

Chapter 6 Building a MANTIS MQSeries application

60 P39-1365-00

Using the MQEXIT Interface to close all open handles
The MQEXIT Interface enables the user program to close all open
handles with one call to MQEXIT.

Changing the MQEXIT Interface layout
Altering data already present in this Interface layout. Do not change
this Interface layout. Doing so will corrupt the Interface and will result in
the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQEXIT Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQEXIT 07:55:47
Element Count : 6 Element Size : 56
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 EXT_FUNCTION TEXT TEXT 8
2 EXT_HANDLE TEXT TEXT 32
3 EXT_COMPCODE BIG BINARY 4
4 EXT_REASON BIG BINARY 4
5 EXT_IDENT BIG BINARY 4
6 EXT_DMPLENGTH BIG BINARY 4

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 61

Initializing the MQEXIT Interface
Special initialization. This Interface does not require special
initialization before you can use it.

Initialization procedure. To initialize this Interface, set
EXT_FUNCTION to the string value “EXIT”.

During MANTIS fatal processing, if there are any connected resources,
the MANTIS nucleus calls MQEXIT.

Sample code. See the following sample code:
340 INTERFACE MQEXIT("MASTER:MQEXIT",PASSWORD)

350 EXT_FUNCTION="EXIT"

360 CALL MQEXIT

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQEXIT Interface.

2. Sets the EXT_FUNCTION as required.

3. Calls the Interface, in order to close all open handles, created from
prior calls, to the MQCONNECT Interface.

Chapter 6 Building a MANTIS MQSeries application

62 P39-1365-00

Using the MQGET Interface to read an MQSeries message
The MQGET Interface enables you to read an MQSeries message via
the mqget API.

Changing the MQGET Interface layout
Changing fields that are already present in this Interface layout. Do
not change (Alter, Insert, or Delete) the fields that already exist in this
Interface layout. Doing so will corrupt the Interface and will result in the
premature termination of MANTIS.

Adding user message data to the end of this Interface layout. You
must add user message data to the end of this Interface layout. Before
you can read an MQSeries message via the mqget API, perform the
following:

1. Use the Interface Design Facility Library Functions to fetch the
MQGET Interface template.

2. Select the Update Area Layout option.

3. Add your message data layout to the end of the MQGET Interface
template.

4. Use Library Functions to save the MQGET Interface template under
a new name.

Do not alter the MQPUT Interface template by replacing it.

Each different message layout requires its own MQGET Interface and is
modeled on MASTER:MQGET.

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 63

MQGET Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQGET 07:52:06
Element Count : 45 Element Size : 504
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 GET_FUNCTION TEXT TEXT 8
2 GET_HANDLE TEXT TEXT 32
3 GET_COMPCODE BIG BINARY 4
4 GET_REASON BIG BINARY 4
5 GET_IDENT BIG BINARY 4
6 GET_DMPLENGTH BIG BINARY 4
7 GET_MSGLENGTH BIG BINARY 4
8 G_MQMD_VERSION BIG BINARY 4 YES
9 G_MQMD_REPORT BIG BINARY 4 YES
10 G_MQMD_MSGTYPE BIG BINARY 4 YES
11 G_MQMD_EXPIRY BIG BINARY 4 YES
12 G_MQMD_FEEDBACK BIG BINARY 4 YES
13 G_MQMD_ENCODING BIG BINARY 4 YES
14 G_MQMD_CODEDCHAR BIG BINARY 4 YES
15 G_MQMD_FORMAT TEXT TEXT 8
16 G_MQMD_PRIORITY BIG BINARY 4 YES
17 G_MQMD_PERSISTEN BIG BINARY 4
18 G_MQMD_MSGID TEXT TEXT 24
19 G_MQMD_CORRELID TEXT TEXT 24
20 G_MQMD_BACKOUTCO BIG BINARY 4 YES
21 G_MQMD_REPLYTOQ TEXT TEXT 48
22 G_MQMD_REPLYTOQM TEXT TEXT 48
23 G_MQMD_USERIDENT TEXT TEXT 12
24 G_MQMD_ACCOUNTIN TEXT TEXT 32
25 G_MQMD_APPLIDENT TEXT TEXT 32
26 G_MQMD_PUTAPPLTY BIG BINARY 4 YES
27 G_MQMD_PUTAPPLNA TEXT TEXT 28
28 G_MQMD_PUTDATE TEXT TEXT 8
29 G_MQMD_PUTTIME TEXT TEXT 8
30 G_MQMD_APPLORIGI TEXT TEXT 4
31 G_MQMD_GROUPID TEXT TEXT 24
32 G_MQMD_MSGSEQNUM BIG BINARY 4 YES
33 G_MQMD_MSGFLAGS BIG BINARY 4 YES
34 G_MQMD_ORIGINALL BIG BINARY 4 YES
35 MQGMO_VERSION BIG BINARY 4 YES
36 MQGMO_OPTIONS BIG BINARY 4 YES
37 MQGMO_WAITINTERV BIG BINARY 4 YES
38 MQGMO_RESOLVEDQN TEXT TEXT 48
39 MQGMO_MATCHOPTIO BIG BINARY 4 YES
40 MQGMO_GROUPSTATU TEXT TEXT 1
41 MQGMO_SEGMENTSTA TEXT TEXT 1
42 MQGMO_SEGMENTATI TEXT TEXT 1
43 MQGMO_RESERVED1 TEXT TEXT 1
44 MQGMO_MSGTOKEN TEXT TEXT 16
45 MQGMO_RETURNEDLE BIG BINARY 4 YES

Add your message fields here

Chapter 6 Building a MANTIS MQSeries application

64 P39-1365-00

Initializing the MQGET Interface to its default usable state
Special initialization. This Interface requires special initialization—that
is, before you can use this Interface, you must call a special function in
order to initialize the Interface to its default usable state.

The initialization process will not alter any of the user fields that you
added to the end of the Interface layout.

To review the settings for the default state of an MQGET Interface, refer
to MQSERIES Application Programming Reference Manual, SC33-1673.

Initialization procedure. To initialize the Interface, perform the
following:

1. Set the FUNCTION field to the “INITGET” string.

2. Call the Interface.

Sample code. See the following sample code:
140 INTERFACE MQGET1("MQGET1",PASSWORD)

150 GET_FUNCTION="INITGET"

160 CALL MQGET1

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQGET1 Interface.

2. Sets the GET_FUNCTION variable.

3. Calls the MQGET1 Interface.

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 65

Changing the initialized Interface in order to receive a
message
Once you have initialized the Interface, you can set the GET_FUNCTION
and GET_HANDLE variables before you call the MQGET Interface, so
that you are able to receive a message.

Procedure for receiving a message. To receive a message, perform
the following:

1. Change the GET_FUNCTION variable to “GET”.

2. Set the GET_HANDLE variable to a valid handle from a previous
MQCONNECT.

3. Call the Interface.

Sample code. See the following sample code:
200 GET_FUNCTION="GET"

210 GET_HANDLE=SAVE_HANDLE2

220 CALL MQGET1

Description of sample code. The above MANTIS program performs
the following:

1. Sets the GET_FUNCTION variable.

2. Sets the GET_HANDLE variable to a valid handle from a previous
MQCONNECT.

3. Calls the MQGET1 Interface.

Chapter 6 Building a MANTIS MQSeries application

66 P39-1365-00

Using the MQPUT Interface to send an MQSeries message
The MQPUT Interface enables you to send an MQSeries message via
the mqput API.

Changing the MQPUT Interface layout
Changing fields that are already present in this Interface layout. Do
not change the sequence of fields in the beginning of this Interface
layout. Doing so will corrupt the Interface and will result in the premature
termination of MANTIS.

Adding user message data to the end of the Interface layout. You
must add user message data to the end of this Interface layout. Before
you can send an MQSeries message via the mqput API, perform the
following:

1. Use the Interface Design Facility Library Functions to fetch the
MQPUT Interface template.

2. Select the Update Area Layout option.

3. Add your message data layout to the end of the MQPUT Interface
template.

4. Use Library Functions to save the MQPUT Interface template under
a new name.

Do not alter the MQPUT Interface template by replacing it.

Each different message layout requires its own version of the MQPUT
Interface and is modeled on MASTER:MQPUT.

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 67

MQPUT Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQPUT 07:50:13
Element Count : 43 Element Size : 540
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 PUT_FUNCTION TEXT TEXT 8
2 PUT_HANDLE TEXT TEXT 32
3 PUT_COMPCODE BIG BINARY 4
4 PUT_REASON BIG BINARY 4
5 PUT_IDENT BIG BINARY 4
6 PUT_DMPLENGTH BIG BINARY 4
7 PUT_LENGTH BIG BINARY 4
8 P_MQMD_VERSION BIG BINARY 4 YES
9 P_MQMD_REPORT BIG BINARY 4 YES
10 P_MQMD_MSGTYPE BIG BINARY 4 YES
11 P_MQMD_EXPIRY BIG BINARY 4 YES
12 P_MQMD_FEEDBACK BIG BINARY 4 YES
13 P_MQMD_ENCODING BIG BINARY 4 YES
14 P_MQMD_CODEDCHAR BIG BINARY 4 YES
15 P_MQMD_FORMAT TEXT TEXT 8
16 P_MQMD_PRIORITY BIG BINARY 4 YES
17 P_MQMD_PERSISTEN BIG BINARY 4 YES
18 P_MQMD_MSGID TEXT TEXT 24
19 P_MQMD_CORRELID TEXT TEXT 24
20 P_MQMD_BACKOUTCO BIG BINARY 4 YES
21 P_MQMD_REPLYTOQ TEXT TEXT 48
22 P_MQMD_REPLYTOQM TEXT TEXT 48
23 P_MQMD_USERIDENT TEXT TEXT 12
24 P_MQMD_ACCOUNTIN TEXT TEXT 32
25 P_MQMD_APPLIDENT TEXT TEXT 32
26 P_MQMD_PUTAPPLTY BIG BINARY 4 YES
27 P_MQMD_PUTAPPLNA TEXT TEXT 28
28 P_MQMD_PUTDATE TEXT TEXT 8
29 P_MQMD_PUTTIME TEXT TEXT 8
30 P_MQMD_APPLORIGI TEXT TEXT 4
31 P_MQMD_GROUPID TEXT TEXT 24
32 P_MQMD_MSGSEQNUM BIG BINARY 4 YES
33 P_MQMD_MSGFLAGS BIG BINARY 4 YES
34 P_MQMD_ORIGINALL BIG BINARY 4 YES
35 MQPMO_VERSION BIG BINARY 4 YES
36 MQPMO_OPTIONS BIG BINARY 4 YES
37 MQPMO_KNOWNDESTC BIG BINARY 4 YES
38 MQPMO_UNKNOWNDES BIG BINARY 4 YES
39 MQPMO_INVALIDDES BIG BINARY 4 YES
40 MQPMO_RESOLVEDQN TEXT TEXT 48
41 MQPMO_RESOLVEDQM TEXT TEXT 48
42 MQPMO_RECSPRESEN BIG BINARY 4 YES
43 MQPMO_PUTMSGRECF BIG BINARY 4 YES

Add your message fields here

Chapter 6 Building a MANTIS MQSeries application

68 P39-1365-00

Initializing the MQPUT Interface to its default usable state
Special initialization. This Interface requires special initialization—that
is, before you can use this Interface, you must call a special function in
order to initialize the Interface to its default usable state.

The initialization process will not alter any of the user fields that you
added to the end of the Interface layout.

To review the settings for the default state of an MQPUT, refer to
MQSERIES Application Programming Reference Manual, SC33-1673.

Initialization procedure. To initialize the Interface, perform the
following:

1. Place the “INITPUT” string in the PUT_FUNCTION field.

2. Call the Interface.

Sample code. See the following sample code:
140 INTERFACE MQPUT1("MQPUT1",PASSWORD)

150 PUT_FUNCTION="INITPUT"

160 CALL MQPUT1

Description of sample code. The above MANTIS program performs
the following:

1. Loads the MQPUT1 Interface.

2. Sets the PUT_FUNCTION variable.

3. Calls the MQPUT1 Interface

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 69

Changing the initialized Interface in order to send a message
Once you initialize the Interface, you can perform the procedure for
sending a message.

Procedure for sending a message. To send a message, perform the
following:

1. Change PUT_FUNCTION to “PUT”.

2. Set the PUT_HANDLE variable to a valid handle from a previous
MQCONNECT.

3. Call the Interface.

Sample code. See the following sample code:
170 PUT_FUNCTION="PUT"

180 PUT_HANDLE=SAVE_HANDLE2

190 CALL MQPUT1

Description of sample code. The above MANTIS program performs
the following:

1. Sets the PUT_FUNCTION variable.

2. Sets the PUT_HANDLE variable to a valid handle from a previous
MQCONNECT.

3. Calls the MQGET1 Interface.

Chapter 6 Building a MANTIS MQSeries application

70 P39-1365-00

Using the MQROLLBACK Interface rollback to a previous sync
point and reverse all previous message GETs and PUTs

The MQROLLBACK Interface enables you to perform the following:

1. Rollback to a previous sync point.

2. As MQSeries and its mqback API specify, reverse all previous
message GETs and PUTs.

Changing the MQROLLBACK Interface layout
Changing fields that are already present in this Interface layout. Do
not change this Interface layout. Doing so will corrupt the Interface and
will result in the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQROLLBACK Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQROLLBACK 07:55:47
Element Count : 6 Element Size : 56
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 ROL_FUNCTION TEXT TEXT 8
2 ROL_HANDLE TEXT TEXT 32
3 ROL_COMPCODE BIG BINARY 4
4 ROL_REASON BIG BINARY 4
5 ROL_IDENT BIG BINARY 4
6 ROL_DMPLENGTH BIG BINARY 4

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 71

Initializing the MQROLLBACK Interface
Special initialization. This Interface does not require special
initialization before you can use it.

Initialization procedure. To initialize this Interface, perform the
following. These steps will establish a sync point based on the object
(CON_HANDLE), pointed to by the HANDLE, that was returned by a
previous MQCONNECT:

1. Set the ROL_HANDLE variable to a valid handle that was returned
by the MQCONNECT Interface.

2. Set the ROL_FUNCTION variable to the string “ROLLBACK”.

3. Call the Interface.

Sample code. See the following sample code:
270 INTERFACE MQROLLBACK("MASTER:MQROLLBACK",PASSWORD)

280 ROL_FUNCTION="ROLLBACK"

290 ROL_HANDLE=SAVE_HANDLE1

300 CALL MQROLLBACK

Description of sample code. The above MANTIS program code
performs the following:

1. Loads the MQROLLBACK Interface.

2. Sets the required fields (ROL_FUNCTION and ROL_HANDLE).

3. Calls the Interface.

OS/390 Transaction Server and MQROLLBACK
MQROLLBACK is not supported in OS/390 Transaction Server. In
OS/390 Transaction Server, transaction support of MQSeries messages
falls under normal MANTIS transaction guidelines.

Chapter 6 Building a MANTIS MQSeries application

72 P39-1365-00

Using the MQTM Interface to map the MQSeries trigger data to
the MANTIS MQTM Interface

The MQTM Interface maps the MQSeries trigger data to the MANTIS
MQTM Interface.

For more information on using MANTIS as an MQSeries trigger message
handler, see “MQSeries/MANTIS triggering” on page 75 and “General
UNIX and OS/390 considerations” on page 101.

Changing the MQTM Interface layout
Changing fields that are already present in this Interface layout. Do
not change this Interface layout. Doing so will corrupt the Interface and
will result in the premature termination of MANTIS.

Adding user data to the end of this Interface layout. You need not
add user data to this Interface layout.

MQTM Interface layout figure
The Interface layout is shown below:

Page No : 1 : Interface Area Layout 2001/09/26
MASTER:MQTM 09:25:33
Element Count : 18 Element Size : 792
ELEM -------------NAME------------- TYPE FORMAT LEN SIGN DEC DIM -ATTRIBUTE-
1 TM_FUNCTION TEXT TEXT 8
2 TM_HANDLE TEXT TEXT 32
3 TM_COMPCODE BIG BINARY 4
4 TM_REASON BIG BINARY 4
5 TM_IDENT BIG BINARY 4
6 TM_DMPLENGTH BIG BINARY 4
7 TM_MEMADDR TEXT TEXT 4
8 TM_STRUCID TEXT TEXT 4
9 TM_VERSION BIG BINARY 4
10 TM_QNAME TEXT TEXT 48
11 TM_PROCESSNAME TEXT TEXT 48
12 TM_TRIGGERDATA TEXT TEXT 64
13 TM_APPLTYPE BIG BINARY 4
14 TM_APPLID1 TEXT TEXT 128
15 TM_APPLID2 TEXT TEXT 128
16 TM_ENVDATA TEXT TEXT 128
17 TM_USERDATA TEXT TEXT 128
18 TM_QMGRNAME TEXT TEXT 48

Using the MQSeries Interface layouts

MANTIS WebSphere MQ Programming 73

Initializing the MQTM Interface
Special initialization. This Interface does not require special
initialization before you can use it.

Initialization procedure. To initialize this Interface, set
TMC_FUNCTION to the string “INITMQTM”.

Sample code. See the following sample code:
370 INTERFACE MQTM("MASTER:MQTM, PASSWORD)

380 TMC_FUNCTION = "INITMQTM"

390 CALL MQTM

Description of sample code. In order to retrieve the MQSeries trigger
message data, the preceding MANTIS program performs the following:

1. Loads the MQTM Interface.

2. Sets the required field (TMC_FUNCTION).

3. Calls the Interface.

Upon successful return, there is sufficient information to enable the
MANTIS program to connect to the appropriate queue and retrieve the
message that triggered the event.

Chapter 6 Building a MANTIS MQSeries application

74 P39-1365-00

MANTIS WebSphere MQ Programming 75

7
MQSeries/MANTIS triggering

This chapter describes how to use MANTIS as an MQSeries trigger
handler. It is organized in the following sections:

♦ “General MANTIS trigger considerations” on page 76.

♦ “UNIX MQSeries/MANTIS trigger considerations” on page 78.

♦ “OS/390 MQSeries/MANTIS trigger considerations” on page 82.

Using MANTIS for triggering is not currently supported under OS/390
Batch.

Chapter 7 MQSeries/MANTIS triggering

76 P39-1365-00

General MANTIS trigger considerations
MQSeries can invoke MANTIS in the background, so that MANTIS can
handle a particular message type being sent to a queue that is defined
as a trigger queue.

Procedure for using MANTIS as a trigger handler
To use MANTIS as a trigger handler, perform the following:

1. Use MQSeries queue definitions to associate MANTIS with a
particular MQSeries queue and message type. For more
information, refer to the following:

♦ MQSeries Application Programming Guide, SC33-0807

♦ One of the following platform-specific sections in this chapter.
See “UNIX MQSeries/MANTIS trigger considerations” on
page 78 or “OS/390 MQSeries/MANTIS trigger considerations”
on page 82.

2. Tell MANTIS which user, password, and program to execute in order
to handle the trigger message. Each platform requires a different
procedure. For platform-specific information, see one of the
following:

♦ “UNIX MQSeries/MANTIS trigger considerations” on page 78

♦ “OS/390 MQSeries/MANTIS trigger considerations” on page 82

Programs that illustrate the trigger-handling process
MANTIS includes a set of programs to illustrate the trigger-handling
process.

See “MQSeries/MANTIS example programs” on page 87 for descriptions
of the following:

♦ How these trigger-handling programs work

♦ Front-end components needed to complete the trigger-handling
process

The following two platform-specific sections describe components
needed to complete the trigger-handling process.

General MANTIS trigger considerations

MANTIS WebSphere MQ Programming 77

Writing a MANTIS application program to handle the triggered
event

Once you have customized the trigger-handler front-end for your
environment, you must write a MANTIS application program to handle
the triggered event.

This MANTIS application program must call the MQTM Interface in order
to retrieve the following:

♦ For UNIX users: MQTMC2 record description.

♦ For OS/390 users: MQTM record description.

For details on the MQTMC2 or MQTM record description, refer to
MQSERIES Application Programming Reference, SC33-1673. Each of
these two record descriptions contain detailed information about the
message that caused the trigger event.

After the MANTIS application calls the MQTM Interface, it must perform
the following:

1. Interrogate the fields.

2. Open the appropriate queue.

3. Retrieve the message.

Sample program for sending a message to a trigger queue
For an example of how to send a message to a queue defined as a
trigger queue, study the MASTER:MQ_TRIGGER sample program (see
“MQ_TRIGGER” on page 91).

Sample program for handling an MQSeries trigger event
For an example of how to handle an MQSeries trigger event, study the
MASTER:MQ_HANDLER sample program (see “MQ_HANDLER” on
page 90).

Chapter 7 MQSeries/MANTIS triggering

78 P39-1365-00

UNIX MQSeries/MANTIS trigger considerations

The trigger.sh script as a model for your trigger handler
Use the trigger.sh script as a model when you develop your own trigger
handler. This script, one of the MQSeries/MANTIS example programs, is
located in the $MANTIS_ROOT/libmqs directory that accompanies the
UNIX version of MANTIS.

Steps required for trigger handling
For trigger handling, the following must occur:

1. You must associate trigger.sh, or a program that you have modeled
on it, with the trigger queue.

2. MQSeries must execute trigger.sh, or a program that you have
modeled on it, as the trigger handler.

Procedure for constructing a trigger handler
Perform the following in trigger.sh (or in a program that you have
modeled on it):

1. Redirect all MANTIS terminal output to a log file.

Do this because MANTIS executes the user, password, and program
in batch form, in the background.

2. Enter settings for the MANTIS working environment, such as
MANTIS_PATCH, MANTIS_ROOT, MANTIS_CLASS, and so on.

3. Set the MQTMC2 environment variable to the trigger record passed
from MQSeries.

4. Make any other changes specified by the documentation inside
trigger.sh.

Since MQSeries invokes the trigger script and ultimately MANTIS, you
must give MQSeries full READ/WRITE/EXECUTE privileges to all files
within the $MANTIS_ROOT directory structure.

UNIX MQSeries/MANTIS trigger considerations

MANTIS WebSphere MQ Programming 79

MQSeries and MANTIS procedure for handling the triggered
event

Description of the procedure for handling the triggered event
MQSeries and MANTIS take the following steps (shown in “Figure
depicting the procedure for handling the triggered event” on page 81) to
cooperatively handle the triggered event:

1. An MQSeries-enabled application (MANTIS or any other application)
sends a message to an application queue (this application queue
must be defined as being trigger-enabled).

The following figure depicts this MQSeries-enabled application as
residing on the same system as the application queue, but there are
no restrictions on the type or location of the application or system.
The only requirement is that MQSeries routes the message to the
correct destination.

2. MQSeries copies the message to the initiation queue.

3. The trigger monitor program that has been watching the initiation
queue performs the following:

A. Detects an inbound message.

B. Launches the appropriate application, trigger.sh, to handle the
message (the MQTMC2 data structure is passed to trigger.sh as
an argument).

4. Trigger.sh performs the following:

A. Places the MQTMC2 data into the MQTMC2 environment
variable.

B. Sets up the MANTIS environment.

C. Executes MANTIS in batch mode, using the appropriate USER,
PASSWORD, and PROGRAM.

Chapter 7 MQSeries/MANTIS triggering

80 P39-1365-00

5. MANTIS signs on via the specified USER and PASSWORD.

6. The MANTIS program specified by trigger.sh in step 4 begins
executing.

This program is written to handle one or more trigger message types.
This program uses the MQTM Interface to retrieve the MQTMC2
data that trigger.sh placed in the environment variable MQTMC2 .

7. The MANTIS program performs the following:

A. Connects to the initiation queue returned in the MQTM Interface.

B. Retrieves the message that caused the trigger event.

8. The application may choose to connect to other application queues
to send and receive messages; there are no restrictions on what the
application does next.

UNIX MQSeries/MANTIS trigger considerations

MANTIS WebSphere MQ Programming 81

Figure depicting the procedure for handling the triggered
event
MQSeries and MANTIS take the following steps (see “Description of the
procedure for handling the triggered event” on page 79) to cooperatively
handle the triggered event:

Application
Queue

Initiation
Queue

5

UNIX

MQSeries Queue Manager

2
7

8

Trigger
Monitor

1

3

trigger.sh

4

MQSeries
Application

MANTIS

MQS INTERFACE

Handler Program
INTERFACE MQTM
INTERFACE MQCONNECT
INTERFACE MQGET
etc

6
MQTMC2

Data

MQTMC2
Data

Chapter 7 MQSeries/MANTIS triggering

82 P39-1365-00

OS/390 MQSeries/MANTIS trigger considerations

The CSOXTRIG front-end application as a model for your trigger
handler

Use the CSOXTRIG front-end application (CICS transaction) as a model
when you develop your own trigger handler. Cincom provides this
application, one of the MQSeries/MANTIS example programs, in both
executable and source forms.

Steps required for trigger handling
For trigger handling, the following must occur:

1. You must associate CSOXTRIG, or a program modeled on it, with
the trigger queue.

2. MQSeries must execute CSOXTRIG, or a program modeled on it, as
the trigger handler.

OS/390 MQSeries/MANTIS trigger considerations

MANTIS WebSphere MQ Programming 83

Procedure for constructing a trigger handler
Perform the following in CSOXTRIG (or in an application that is modeled
on it):

1. Customize the BTRANID setting.

This is the ID of the MANTIS background transaction that this front-
end application will start.

2. Customize the BUID setting.

This is the user that is executed in batch MANTIS.

3. Customize the BPSW setting.

This is the password that is executed in batch MANTIS.

4. Customize the BTRIG setting.

This is the program that is executed in batch MANTIS.

You need not customize the MSHMEM setting—it will be automatically
set to the address of the Shared GETMAIN area that will contain the
MQTM trigger to be passed from MQSeries.

5. For further setting changes, review the documentation within
CSOXTRIG.

Chapter 7 MQSeries/MANTIS triggering

84 P39-1365-00

MQSeries and MANTIS procedure for handling the triggered
event

Description of the procedure for handling the triggered event
MQSeries and MANTIS take the following steps (shown in “Figure
depicting procedure for handling the triggered event” on page 86) to
cooperatively handle the triggered event:

1. An MQSeries-enabled application (MANTIS or any other application)
sends a message to an application queue (this application queue
must be defined as being trigger-enabled).

The following figure depicts this MQSeries-enabled application as a
UNIX application residing on the same system as the application
queue, but there are no restrictions on the type or location of the
application or system. The only requirement is that MQSeries routes
the message to the correct destination.

2. MQSeries copies the message to the initiation queue.

3. The CICS trigger monitor program (CKTI) that has been watching the
initiation queue performs the following:

A. Detects an inbound message.

B. Launches the appropriate application, CSOXTRIG, to handle the
message (the MQTM data structure is passed to CSOXTRIG as
an argument on the CICS start).

4. CSOXTRIG performs the following:

A. Places the MQTM data into a shared getmain area.

B. Passes the getmain area address, USER, PASSWORD, and
PROGRAM to MANTIS on the start.

OS/390 MQSeries/MANTIS trigger considerations

MANTIS WebSphere MQ Programming 85

5. MANTIS, running as a background MANTIS task, signs on via the
specified USER and PASSWORD.

6. The specified MANTIS program begins executing.

This program is written to handle one or more trigger message types.
This program uses the MQTM Interface to retrieve the MQTM data
that CSOXTRIG placed in the getmain area by CSOXTRIG.

7. The MANTIS program performs the following:

A. Connects to the initiation queue returned in the MQTM Interface.

B. Retrieves the message that caused the trigger event.

8. The application may choose to connect to other queues to send and
receive messages; there are no restrictions on what the application
does next.

Chapter 7 MQSeries/MANTIS triggering

86 P39-1365-00

Figure depicting procedure for handling the triggered event
MQSeries and MANTIS take the following steps (“Description of the
procedure for handling the triggered event” on page 84) to cooperatively
handle the triggered event:

Application
Queue

Initiation
Queue

5

CICS

MQSeries Queue Manager

2
7

8

Trigger
Monitor - CKTI

1

3

CSOXTRIG

4

MQSeries
Application

MANTIS

MQS INTERFACE
CSOXWMQS

Handler Program
INTERFACE MQTM
INTERFACE MQCONNECT
INTERFACE MQGET
etc

6
MQTM

Data

MQTM
Data

MANTIS WebSphere MQ Programming 87

8
MQSeries/MANTIS example programs

Cincom provides MANTIS example programs along with the MANTIS
distribution. These programs test the MQSeries Interface and
demonstrate its usage. Find them under the MASTER user.

The following sections describe these programs in more detail.

MANTIS
program

Associated
screen

Description

MQ_HANDLER MQ_HANDLER Working MANTIS program that serves as a
message trigger handler.

MQ_HANDLER@ MQ_HANDLER MANTIS source code for MQ_HANDLER.
MQ_INIT N/A MANTIS subroutine containing MQSeries

constants.
MQ_SAMPLE MQ_SAMPLE Working MANTIS program that tests each

MQSeries Interface.
MQ_SAMPLE@ MQ_SAMPLE MANTIS source code for MQ_SAMPLE.
MQ_TRIGGER N/A Working MANTIS program that SENDs a

message to trigger MQ_HANDLER.
MQ_TRIGGER@ N/A MANTIS source code for MQ_TRIGGER.

Chapter 8 MQSeries/MANTIS example programs

88 P39-1365-00

MQ_INIT
By itself, MQ_INIT only allocates and initializes MANTIS variables that
are used as constants for the various MQSeries Interface fields.

MQ_INIT is built as a subroutine that can be copied into a user program.
Use it as one of the following:

♦ External subroutine

♦ Internal subroutine

♦ Component

For more information on MQ_INIT, see “Constants” on page 39.

MQ_SAMPLE
MQ_SAMPLE is an example program that performs the following:

1. Tests each MQSeries Interface.

2. For each Interface, displays either a “SUCCESSFUL” status or an
“ERROR” status.

Uses for MQ_SAMPLE
You can use MQ_SAMPLE:

♦ As a test to find out whether the connection between MANTIS and
MQSeries is working properly.

♦ As an example for developing MANTIS programs that perform
MQSeries messaging.

Queue used for sending and receiving messages
MANTIS uses the SYSTEM.DEFAULT.LOCAL.QUEUE as the queue for
sending and receiving messages. Therefore, you must be authorized to
perform write operations to this queue. For
SYSTEM.DEFAULT.LOCAL.QUEUE, you may substitute any queue to
which you have write privileges.

MQ_SAMPLE

MANTIS WebSphere MQ Programming 89

UNIX screen shot of MQ_SAMPLE
The UNIX screen shot of MQ_SAMPLE below shows a “SUCCESSFUL”
status for all MQSeries Interfaces.

MANTIS / MQSERIES TEST SCREEN

START TIME : 10:33:58 : END TIME : 10:34:01 :

CONNECT 1: SUCCESSFUL :
CONNECT 1 DUMP: SUCCESSFUL :
CONNECT 2: SUCCESSFUL :
CONNECT 2 DUMP: SUCCESSFUL :
PUT: SUCCESSFUL :
PUT DUMP: SUCCESSFUL :
GET: SUCCESSFUL :
GET DUMP: SUCCESSFUL :
COMMIT: SUCCESSFUL :
COMMIT DUMP: SUCCESSFUL :
ROLLBACK: SUCCESSFUL :
ROLLBACK DUMP: SUCCESSFUL :
DISCONNECT 1: SUCCESSFUL :
DISCONNECT 1 DUMP ..: SUCCESSFUL :
DISCONNECT 2: SUCCESSFUL :
DISCONNECT 2 DUMP ..: SUCCESSFUL :

PRESS ENTER TO CONTINUE

OS/390 CICS and COMMIT and ROLLBACK functions
For OS/390 CICS, MQ_SAMPLE bypasses COMMIT and ROLLBACK
functions because they are not supported.

Chapter 8 MQSeries/MANTIS example programs

90 P39-1365-00

MQ_HANDLER
MQ_HANDLER is a MANTIS example program that demonstrates how
MANTIS can be used as an MQSeries trigger handler.

Abilities necessary for any handler to possess
MQ_HANDLER demonstrates the abilities necessary for any handler to
possess. A handler must perform the following:

1. Receive the Trigger Record by calling the MANTIS Interface MQTM
(For OS/390, this is MQTM; for Unix, this is MQTMC2). The
MANTIS application can review the data in this Interface’s fields, in
order to determine the next step.

2. Using the MQCONNECT Interface, connect to the queue containing
the message to which this program was triggered.

3. Retrieve the triggered message via the appropriate MQGET
Interface. Each message type will require its own Interface that is
modeled after the MQGET Interface.

4. Disconnect from the queue via the MQDISCONNECT Interface.

5. Take appropriate action by connecting, sending, or receiving other
messages.

MEMADDR argument to MQ_HANDLER
OS/390 CICS uses the MEMADDR argument to MQ_HANDLER. The
MEMADDR argument’s purpose is to serve as a storage address of the
MQTM record that CSOXTRIG passed to MANTIS. For more
information, see “OS/390 MQSeries/MANTIS trigger considerations” on
page 82.

Running MQ_HANDLER interactively vs. running it
automatically

Cincom did not design MQ_HANDLER to be run interactively; rather,
Cincom designed it to be executed by the MQSeries trigger monitor. If
you attempt to run MQ_HANDLER interactively, MANTIS aborts. If the
trigger queues and definitions are set up properly, MQSeries will execute
MQ_HANDLER automatically when you interactively run
MASTER:MQ_TRIGGER.

MQ_TRIGGER

MANTIS WebSphere MQ Programming 91

MQ_TRIGGER

Introduction to MQ_TRIGGER
MQ_TRIGGER, a MANTIS example program, sends a message to a
trigger-enabled queue called TRIGGER.QUEUE. MQ_TRIGGER works
with the MQ_HANDLER program.

The MQ_HANDLER program performs the following:

♦ Serves as a trigger handler.

♦ Responds to the message that MQ_TRIGGER sends to
TRIGGER.QUEUE.

Before using MQ_TRIGGER, review the material under “MQ_HANDLER”
on page 90.

MQ_TRIGGER sample output screen
Below is an MQ_TRIGGER sample output screen:

INVOKE TRIGGER

THIS PROGRAM WILL SEND A MESSAGE TO THE TEST TRIGGER.QUEUE
THEREBY CAUSING THE MQSERIES TRIGGER MONITOR TO TRIGGER THE
MANTIS SUPPLIED FRONT END TO INITIALIZE THE ENVIRONMENT
NECESSARY TO ALLOW A BACKGROUND MANTIS TO PROCESS THE
MESSAGE SENT BY THIS PROCESS.

MESSAGE SENT: THIS IS THE TRIGGER MSG FROM MANTIS :
MESSAGE SENT STATUS : SUCCESS :

MESSAGE RECV: ** THIS IS THE TRIGGER RESPONSE MSG ** :
MESSAGE RECV STATUS : SUCCESS :

PROGRAM COMPLETE - PRESS ENTER TO CONTINUE

Chapter 8 MQSeries/MANTIS example programs

92 P39-1365-00

Defining the trigger and associated initiation queue for the
MQ_TRIGGER and the MQ_HANDLER programs

For UNIX
Procedure. Define the following for the MQ_TRIGGER and
MQ_HANDLER programs:

♦ Trigger

♦ Associated initiation queue

To accomplish this, use the sample UNIX MQSC definitions below.

For the APPLICID parameter, specify your installation’s full path to the
MANTIS front-end application.

Sample UNIX MQSC definitions. See the following sample definitions:

DEFINE PROCESS(MANTIS) REPLACE APPLICID('/mantis/mqs/trigger.sh') +
DESCR('MANTIS TEST TRIGGER HANDLER') +
USERDATA('MSG FROM MANTIS MASTER:MQ_TRIGGER')

DEFINE QLOCAL('TRIGGER.QUEUE') REPLACE TRIGGER PROCESS(MANTIS)+
TRIGTYPE(EVERY) INITQ(INITIATION.QUEUE) +
DESCR('MANTIS APPLICATION TRIGGER QUEUE')

DEFINE QLOCAL(INITIATION.QUEUE) REPLACE
LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE)

MQ_TRIGGER

MANTIS WebSphere MQ Programming 93

For OS/390
Procedure. Perform the following:

1. Define a local queue called TRIGGER.QUEUE. Model this queue on
SYSTEM.DEFAULT.LOCAL.QUEUE. You can define this queue in
one of two ways:

♦ Using the MQ ISPF Panels. This is the preferred method.

♦ Using CSQUTIL. You can only use this method for defining a
local queue if security settings permit you to access the MVS
MQSeries command program. If you select this method, modify
the sample UNIX MQSC definitions, listed in the previous
section, to conform to the settings in step 2, below.

2. In the TRIGGER.QUEUE local queue, use the following settings:

♦ Permit shared access = Y

♦ Default share option = S

♦ Put enabled =Y

♦ Get enabled =Y

♦ Trigger Type = EVERY

♦ Trigger Set =YES

♦ Process Name = MANTIS.TEST.MMQT

♦ Initiation Queue = INITIATION.QUEUE

3. Use CSQUTIL or the MQ ISPF Panels to define an initiation queue
called “INITIATION.QUEUE”. You can model it after
SYSTEM.DEFAULT.LOCAL.QUEUE.

4. Define a PROCESS with the following settings:

♦ ProcessName = MANTIS.TEST.MMQT

You can set the ProcessName to any text you want. However,
the ProcessName setting must match the “Process Name” for
TRIGGER.QUEUE

♦ Application ID = MMQT

♦ UserData = “MSG FROM MANTIS MASTER:MQ_TRIGGER”

Chapter 8 MQSeries/MANTIS example programs

94 P39-1365-00

Additional step required if you will be using MQSeries sample
programs. In addition to the preceding MQSeries definitions for
OS/390, you must use the following CICS definitions in order to use any
of the MQSeries example programs:

MQ Interface program:

NAME=CSOXWMQS,LANGUAGE=ASSEMBLER,RELOAD=NO,RESIDENT=NO

MANTIS front-end program for triggering:

NAME=CSOXTRIG,LANGUAGE=ASSEMBLER,RELOAD=NO,RESIDENT=NO
MANTIS transaction to be started by xxxx (cics trigger program name here): NAME=MTRG
(suggested), PROGRAM=CSOXTRIG,TWASIZE=3240

GETERR(2033)
Regarding the GETERR(2033) error message, consider the following:

♦ Improperly configured trigger queues or definitions. If the sent
message works properly, most errors are related to the GET in
MQ_TRIGGER and are usually due to improperly configured trigger
queues or definitions. To locate the source of this error, perform the
following:

- For CICS—Review the CICS JOBLOG to see if the trigger
monitor successfully started CSOXTRIG.

- For both CICS and UNIX—Review the MANTIS DUMP file for
indications of how far the MASTER:MQ_HANDLER program
progressed before it failed. For more information on the
MQSeries/MANTIS Dump mechanism, see “MQSeries/MANTIS
diagnostic considerations” on page 95.

♦ Timing problem. Occasionally, a timing problem causes error 2033.
This happens because insufficient time was provided in which to
invoke, execute, and receive the message from MQ_HANDLER. To
resolve this problem, simply run MQ_TRIGGER again.

MANTIS WebSphere MQ Programming 95

9
MQSeries/MANTIS diagnostic
considerations

Diagnosing a MANTIS program error
When a MANTIS program causes errors while it is attempting to
CONNECT, GET, PUT, etc, perform the following steps to diagnose the
problem:

1. Check the Interface name for returned values.

For detailed descriptions of these return values, see “Errors” on
page 31.

2. Review the COMPCODE field in the Interface layout.

The COMPCODE field contains a number that represents problem
severity. For more information about the COMPCODE field in the
Interface views, see “Fundamental usage” on page 25.

Chapter 9 MQSeries/MANTIS diagnostic considerations

96 P39-1365-00

3. Review the REASON field in the Interface layout.

The REASON field contains a number, returned by MQSeries, that
further describes the problem. For more information on this number:

♦ Compare this number with the MQRC_ values found in the
MANTIS program MQ_INIT.

♦ Look up a description of the number in MQSERIES Application
Programming Guide, SC33-1673.

For more information about the REASON field in the Interface views,
see “Fundamental usage” on page 25.

4. Perform a DUMP of the Interface layout. This may be required under
severe conditions—especially when CINCOM Technical Support is
involved. For more information on dumping MQSeries Interface
views, see the following section, “Dumping MQSeries Interface
views” on page 97.

Dumping MQSeries Interface views

MANTIS WebSphere MQ Programming 97

Dumping MQSeries Interface views

Introduction to the “DUMP” value
Each MQSeries Interface layout contains a FUNCTION field that you
must initialize to the function you would like to perform. For example:

♦ MQCONNECT contains a field called CON_FUNCTION. Set this
field to “INITCONN” or “CONNECT”.

♦ MQDISCONNECT contains a field called DIS_FUNCTION. Set this
field to “DISCONN”.

There’s an additional value to which you can set all FUNCTION fields:
“DUMP”. “DUMP” signals the Interface subroutines to dump the contents
of the Interface layout.

UNIX sample of a dumped MQCONNECT Interface
Below is a UNIX sample of an MQCONNECT Interface layout that has
been dumped:

Dumping Connect View Dump Length = 228
0x00000000 - 20202020 20202020 44554d50 20202020 * DUMP *
0x00000010 - 00000002 20202020 20202020 20202020 * *
0x00000020 - 20202020 20202020 20202020 20202020 * *
0x00000030 - 00000000 00000000 00000001 00000000 * *
0x00000040 - 20202020 20202020 20202020 20202020 * *
0x00000050 - 20202020 20202020 20202020 20202020 * *
0x00000060 - 20202020 20202020 20202020 20202020 * *
0x00000070 - 00002011 00000001 53595354 454d2e44 * SYST EM.D *
0x00000080 - 45464155 4c542e4c 4f43414c 2e515545 * EFAU LT.L OCAL .QUE *
0x00000090 - 55452020 20202020 20202020 20202020 * UE *
0x000000a0 - 20202020 20202020 00000000 00000000 * *
0x000000b0 - 00000000 00000000 00000000 00000000 * *
0x000000c0 - 00000000 00000000 00000000 00000000 * *
0x000000d0 - 00000000 00000000 00000000 00000000 * *
0x000000e0 - 00000000 * *

Chapter 9 MQSeries/MANTIS diagnostic considerations

98 P39-1365-00

Procedure for dumping the failing Interface layout
Special initialization. Although an Interface does not require special
initialization to dump, it makes sense to dump the Interface layout after it
has failed to perform as intended.

Procedure for dumping the failing Interface. To dump the failing
Interface layout, set the FUNCTION variable to the string “DUMP”.

Code sample. See the following code:
180 CON_FUNCTION="INITCONN"

190 CALL MQCONNECT

200 CON_FUNCTION="CONNECT"

210 MQOD_OBJECTNAME="SYSTEM.DEFAULT.LOCAL.QUEUE"

220 MQOD_OBJECTTYPE=MQOT_Q

230 CON_OPTIONS=MQOO_INPUT_AS_Q_DEF+MQOO_OUTPUT

240 CALL MQCONNECT

250 IF MQCONNECT<>""

260 CON_FUNCTION="DUMP"

270 CALL MQCONNECT

280 STOP

290 END

Description of the code sample. The preceding MANTIS code
performs the following:

1. Initializes the MQCONNECT Interface by performing the following:

A. Specifying “INITCONN” in the FUNCTION field.

B. Properly setting the remaining connection fields.

2. Resets the FUNCTION field to “CONNECT”.

3. Calls MQCONNECT to connect to the
SYSTEM.DEFAULT.LOCAL.QUEUE.

4. Once control is returned, checks the Interface CALL for errors by
comparing the Interface name to “”.

5. If an error occurs, sets the FUNCTION field “DUMP”.

6. Calls MQCONNECT again to dump the Internet layout.

Dumping MQSeries Interface views

MANTIS WebSphere MQ Programming 99

System-specific dump file descriptions
Consider the dump file description that is relevant to your system:

♦ UNIX dump file. The output file containing the dump output is called
mantis.dmp (you cannot change this name). mantis.dmp may or
may not already exist:

- If mantis.dmp already exists—MANTIS appends the dump to the
end of it. The user must have write privileges to the file.

- If mantis.dmp does not already exist—MANTIS creates it in the
current directory. The user must have write privileges to the
current directory.

♦ OS/390 CICS dump file. The MQSeries Interface opens a Transient
Data Queue called mmqd (you cannot change this name). You can
associate mmqd with any file name, but it must have the following
DCB:

Organization PS
Record format VBA
Record length 100
Block size 23476 (3380)
Allow at least 1 cylinder for primary Space allocation.

In addition to the above DCB for the mmqd, the following CICS
(Transaction Server) definitions are required:

- NAME=MMQD

- TYPE=EXTRA

- DATABUFFERS=10

- DDNAME=MMQD

- OPENTIME=INITIAL

- TYPEFILE=OUTPUT

Chapter 9 MQSeries/MANTIS diagnostic considerations

100 P39-1365-00

Dump length
The Interface type determines the dump length. Once an Interface has
been used, the IDENT field in the Interface layout is set internally to
signify Interface type. An attempt to dump this Interface before the
Interface is used internally will generate an error.

Overriding the dump length with DMPLENGTH
You can override the dump length by entering a numeric size in the
DMPLENGTH field. However, do not specify a size larger than the
Interface itself; if you do, MANTIS may end prematurely. You must set
DMPLENGTH for any dumps of MQGET and MQPUT Interfaces that
include user data fields, because the dump routine does not know the
exact size of the Interface layout (including the user data fields).

MANTIS WebSphere MQ Programming 101

10
General UNIX and OS/390
considerations

Installation considerations

UNIX
Consider the following for MQSeries installation on the UNIX platform:

♦ Things to verify after MQSeries is installed. After MQSeries has
been installed and is running properly, verify the following:
- MANTIS is in proper working order.
- The UNIX environment variable MANTIS_SHRLIB is pointing to

$MANTIS_ROOT/libmqs. This enables MANTIS to load the
MQSeries internal Interface.

For information on setting MANTIS_SHRLIB, refer to MANTIS
Administration OpenVMS/UNIX, P39-1320.

♦ Enabling appropriate patches. To authorize the use of MQSeries,
enable the MANTIS Security patch (Option, Product 13). Before
developing applications using MQSeries, consult Cincom’s MANTIS
technical support in order to get the MANTIS Security patch and any
additional updates .

♦ Installing and running MQSeries. You must install and run
MQSeries before MANTIS can communicate with the Queue
Manager.

♦ Other installation considerations. If you followed the documented
installation procedure, no other installation considerations are
required. To find the documented installation procedure to follow,
refer to the version of MQSeries Quick Beginning Guide for the
appropriate platform.

Chapter 10 General UNIX and OS/390 considerations

102 P39-1365-00

OS/390
Consider the following for MQSeries installation under OS/390:

♦ Enabling the MQSeries feature. In OS/390, you must enable the
MQSeries feature in order to run it.

♦ Authorization error with MQSeries Interfaces. If you ever receive
an authorization error when you attempt to use any of the MQSeries
Interfaces, consult your Mantis Administrator.

♦ “C” runtime. Cincom ships the two “C” runtime libraries with
MANTIS. Perform the following:

1. Concatenate the two “C” runtime libraries in your CICS start JCL,
under the DFHRPL DD statement:
// DD DISP=SHR,DSN=SYS3.SAS700C.CICSLIB 'C' Runtime

// DD DISP=SHR,DSN=SYS3.SAS700C.CICSLOAD 'C' Runtime

2. Add the MQSeries runtime to the CICS start JCL, under the
DFHRPL DD statement:
// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQANLE

// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQCICS

// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQAUTH

// DD DISP=SHR,DSN=CSQ.V5R2M0.SCSQLOAD

MANTIS now dynamically loads the MQSeries entry points that
are called from CSOXWMQS, enabling you to install new
MQSeries releases without having to upgrade MANTIS.

If you followed the documented installation procedure, no other
installation considerations are required. To find the appropriate
installation procedure, refer to the following:

♦ MQSeries for OS/390 Concepts and Planning Guide, GC34-5650

♦ MQSeries for OS/390 System Setup Guide, SC34-5651

♦ MQSeries for OS/390 System Administration Guide, SC34-5652

MQCONNECT

MANTIS WebSphere MQ Programming 103

MQCONNECT

UNIX
Consider the following for the UNIX implementation of the MQCONNECT
Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for:

- MQSeries MQI mqconn

- MQSeries MQI mqopen

♦ Multiple connections can be made to:

- The same object

- Different objects

- Multiple Queue Managers

Chapter 10 General UNIX and OS/390 considerations

104 P39-1365-00

OS/390
Consider the following for the OS/390 implementation of the
MQCONNECT Interface:

♦ Connections under CICS. Under CICS, only one Queue Manager
may be connected to at one time. However, multiple objects
controlled by that queue manager may be connected to concurrently.

♦ CICS Pseudo-Conversational Mode restrictions. Consider the
following restrictions for this terminal mode:

- When the user performs a MANTIS CONVERSE, MQSeries
connections are lost and MQSeries connections are not
maintained.

- The user is responsible for reconnecting to the MQSeries Object
after each CONVERSE.

- Retaining a connection handle across a CONVERSE does not
maintain the connection. If the user uses the connection handle
after a CONVERSE, an Invalid Handle Error results.

♦ CICS Conversational Mode restrictions. CICS Conversational
Mode does not have the same restrictions as CICS Pseudo-
Conversational Mode. All connections are maintained across a
CONVERSE.

MQDISCONNECT

MANTIS WebSphere MQ Programming 105

MQDISCONNECT

UNIX
Consider the following for the UNIX implementation of the
MQDISCONNECT Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for:

- MQSeries MQI mqclose

- MQSeries MQI mqdisc

OS/390
Consider the following for the MVS implementation of the
MQDISCONNECT Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for:

- MQSeries MQI mqclose

- MQSeries MQI mqdisc

Chapter 10 General UNIX and OS/390 considerations

106 P39-1365-00

MQGET

UNIX
Consider the following for the UNIX implementation of the MQGET
Interfaces:

♦ It has no restrictions.

♦ It conforms to the routine requirements for MQSeries MQI mqget.

OS/390
Consider the following for the OS/390 implementation of the MQEXIT
Interface:

MQMD fields not used by the MQGET Interface. Consider that for
OS/390, several MQMD (Message Descriptor) fields do not exist.
Although these fields appear in the MQGET Interface layout for OS/390,
the MQSeries Interface does not use them. These fields are:

♦ MsgSeqNumber

♦ MsgFlags

♦ OriginalLength

♦ GroupId

MQPUT

MANTIS WebSphere MQ Programming 107

MQPUT

UNIX
Consider the following for the UNIX implementation of the MQPUT
Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for MQSeries MQI mqput.

OS/390
Consider the following for the OS/390 implementation of the MQPUT
Interface:

♦ MQMD fields not used by the MQSeries Interface. For OS/390,
four MQMD (Message Descriptor) fields do not exist. Although these
four fields appear in the MQPUT Interface layout for OS/390, the
MQSeries Interface does not use them. These fields are:

- MsgSeqNumber

- MsgFlags

- OriginalLength

- GroupId

♦ MQPMO fields not used by the MQSeries Interface. For OS/390,
two MQPMO (Put Message Options) fields do not exist. Although
these two fields appear in the MQPUT Interface layout for OS/390,
they are not used by the MQSeries Interface:

- RecsPresent

- PutMsgRecFields

Chapter 10 General UNIX and OS/390 considerations

108 P39-1365-00

MQROLLBACK

UNIX
Consider the following for the UNIX implementation of the
MQROLLBACK Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for MQSeries MQI mqback.

OS/390
Consider the following for the OS/390 implementation of the
MQROLLBACK Interface:

♦ MQSeries MQI mqback is not supported in OS/390 CICS. Although
using this Interface does not generate an error, the Interface does
nothing.

♦ To rollback a logical unit of work containing MQSeries updates, use
MANTIS RESET. For more information on MANTIS RESET, refer to
MANTIS Language, OS/390, VSE/ESA, P39-5002.

♦ For more information on COMMITting transactions and units of work,
refer to MQSERIES Application Programming Guide, SC33-0807.

MQCOMMIT

MANTIS WebSphere MQ Programming 109

MQCOMMIT

UNIX
Consider the following for the UNIX implementation of the MQCOMMIT
Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for MQSeries MQI mqcmit.

♦ A CONVERSE on UNIX does not COMMIT the outstanding UNIT of
WORK. Therefore, the MANTIS program must handle all COMMITs
manually.

OS/390
Consider the following for the OS/390 implementation of the
MQCOMMIT Interface:

♦ The MQSeries mqcmit routine is not supported in OS/390 CICS.
Although using the Interface does not generate an error, the
Interface does nothing.

♦ To commit a logical unit of work containing MQSeries updates, use
MANTIS COMMIT. For more information on MANTIS COMMIT, refer
to MANTIS Language, OS/390, VSE/ESA, P39-5002.

♦ If the MANTIS application is running in Pseudo-Conversational
Mode, a CONVERSE, by default, performs the following:

1. Ends the MANTIS transaction.

2. Commits the Logical Unit of Work.

♦ For more information on Committing transactions and units of work,
refer to MQSERIES Application Programming Guide, SC33-0807.

Chapter 10 General UNIX and OS/390 considerations

110 P39-1365-00

MQBEGIN

UNIX
Consider the following for the UNIX implementation of the MQCOMMIT
Interface:

♦ It has no restrictions.

♦ It conforms to the routine requirements for MQSeries MQI mqbegin.

OS/390
Consider the following for the OS/390 implementation of the
MQCOMMIT Interface:

♦ The MQSeries mqbegin routine is not supported in OS/390 CICS.
Although using the Interface does not generate an error, the
Interface does nothing.

♦ Since, under CICS, alI updateable MQSeries transactions are logged
by default, there is no requirement for an MQBEGIN.

♦ For more information on COMMITting transactions and units of work,
refer to MQSERIES Application Programming Guide, SC33-0807.

MQEXIT

MANTIS WebSphere MQ Programming 111

MQEXIT

UNIX
Consider the following for the UNIX implementation of the MQEXIT
Interface:

The MQEXIT Interface is an add-on feature that enables MANTIS
programmers to close all open connections with one call. It performs an
mqclose and mqdisc on all connection handles.

OS/390
Consider the following for the OS/390 implementation of the MQEXIT
Interface:

The MQEXIT Interface is not supported in OS/390 CICS. Although using
this Interface does not generate an error, the Interface does nothing.
Maintain all open handles in the user program and disconnect them
manually.

Chapter 10 General UNIX and OS/390 considerations

112 P39-1365-00

MQTM

UNIX
Consider the following for the UNIX implementation of the MQTM
Interface:

♦ For triggering, the MQTMC2 record is passed to UNIX MANTIS.
Because the MQTM Interface contains all MQTMC2 fields, there are
no restrictions.

♦ The TM_MEMADDR field is only used for OS/390.

OS/390
Consider the following for the OS/390 implementation of the MQTM
Interface:

♦ For triggering, the MQTM record is passed to OS/390 CICS
MANTIS. The MQTM Interface layout contains all MQTMC2 fields.
The only field in the Interface layout that is not usable by OS/390 is
TM_QMGRNAME. Although using this field does not generate an
error, the MQSeries Interface does not use it. It exists only for
compatibility with the UNIX version of MANTIS.

♦ TM_MEMADDR is an OS/390-only field. It serves as a storage
address of the MQTM record that CSOXTRIG passes to MANTIS.
For more information, see “MQSeries/MANTIS triggering” on
page 75.

	Back to Welcome (OS/390, VSE/ESA)
	Back to Welcome (UNIX)
	About this book
	Using this document
	MANTIS overview
	Document organization
	Conventions

	MANTIS documentation series
	MANTIS for Mainframe documentation series
	MANTIS for OpenVMS/UNIX documentation series
	IBM MQSeries documentation series
	Educational material

	Chapter 1 - Overview
	Introduction to WebSphere MQ Programming
	Description of WebSphere MQ Programming
	Development cycle figure

	Using an Interface layout as a template for your Interface
	Generalized Interface program
	MQI and WebSphere MQ Programming
	Reference materials
	Internal Interfaces for MQSeries support

	Chapter 2 - Fundamental usage
	Common fields in MQSeries Interface views

	Chapter 3 - Field naming conventions
	Field prefixes
	Introduction
	Adding another level of prefixing

	Different kinds of fields, requiring different actions

	Chapter 4 - Errors
	Each possible error condition or warning condition

	Chapter 5 - Constants
	Including MQ_INIT in a user program
	Categories of MQSeries constants in MQ_INIT

	Chapter 6 - Building a MANTIS MQSeries application
	Introduction
	Creating programs that use CALLS to the MQSeries Interfaces
	Creating a program that reads a message queue
	Creating a program that writes to a message queue

	Initializing Interfaces
	Initializing Interfaces that do not require special initialization
	How to use the CLEAR statement to initialize an Interface
	What the CLEAR statement does

	Initializing Interfaces that require special initialization
	Sample code for initializing an Interface that requires special initialization

	Using the MQSeries Interface layouts
	Introduction
	Using the MQBEGIN Interface to start a unit of work
	Changing the MQBEGIN Interface layout
	MQBEGIN Interface layout figure
	Initializing the MQBEGIN Interface
	MQBEGIN Interface and OS/390 Transaction Server

	Using the MQCOMMIT Interface to establish a sync point and commit all previous message GETs and PUTs
	Changing the MQCOMMIT Interface layout
	MQCOMMIT Interface area layout figure
	Initializing the MQCOMMIT Interface
	MQCOMMIT and OS/390 Transaction Server

	Using the MQCONNECT Interface to open and connect to an MQSeries object
	Changing the MQCONNECT Interface layout
	MQCONNECT Interface layout figure
	Initializing the MQCONNECT Interface
	Connecting to the MQSeries object
	Using the same MQCONNECT Interface to open multiple objects

	Using the MQDISCONNECT Interface to close and disconnect from an MQSeries object
	Changing the MQDISCONNECT Interface layout
	MQDISCONNECT Interface area layout figure
	Initializing the MQDISCONNECT Interface

	Using the MQEXIT Interface to close all open handles
	Changing the MQEXIT Interface layout
	MQEXIT Interface layout figure
	Initializing the MQEXIT Interface

	Using the MQGET Interface to read an MQSeries message
	Changing the MQGET Interface layout
	MQGET Interface layout figure
	Initializing the MQGET Interface to its default usable state
	Changing the initialized Interface in order to receive a message

	Using the MQPUT Interface to send an MQSeries message
	Changing the MQPUT Interface layout
	MQPUT Interface layout figure
	Initializing the MQPUT Interface to its default usable state
	Changing the initialized Interface in order to send a message

	Using the MQROLLBACK Interface rollback to a previous sync point and reverse all previous message GETs and PUTs
	Changing the MQROLLBACK Interface layout
	MQROLLBACK Interface layout figure
	Initializing the MQROLLBACK Interface
	OS/390 Transaction Server and MQROLLBACK

	Using the MQTM Interface to map the MQSeries trigger data to the MANTIS MQTM Interface
	Changing the MQTM Interface layout
	MQTM Interface layout figure
	Initializing the MQTM Interface

	Chapter 7 - MQSeries/MANTIS triggering
	General MANTIS trigger considerations
	Procedure for using MANTIS as a trigger handler
	Programs that illustrate the trigger-handling process
	Writing a MANTIS application program to handle the triggered event
	Sample program for sending a message to a trigger queue
	Sample program for handling an MQSeries trigger event

	UNIX MQSeries/MANTIS trigger considerations
	The trigger.sh script as a model for your trigger handler
	Steps required for trigger handling
	Procedure for constructing a trigger handler
	MQSeries and MANTIS procedure for handling the triggered event
	Description of the procedure for handling the triggered event
	Figure depicting the procedure for handling the triggered event

	OS/390 MQSeries/MANTIS trigger considerations
	The CSOXTRIG front-end application as a model for your trigger handler
	Steps required for trigger handling
	Procedure for constructing a trigger handler
	MQSeries and MANTIS procedure for handling the triggered event
	Description of the procedure for handling the triggered event
	Figure depicting procedure for handling the triggered event

	Chapter 8 - MQSeries/MANTIS example programs
	MQ_INIT
	MQ_SAMPLE
	Uses for MQ_SAMPLE
	Queue used for sending and receiving messages
	UNIX screen shot of MQ_SAMPLE
	OS/390 CICS and COMMIT and ROLLBACK functions

	MQ_HANDLER
	Abilities necessary for any handler to possess
	MEMADDR argument to MQ_HANDLER
	Running MQ_HANDLER interactively vs. running it automatically

	MQ_TRIGGER
	Introduction to MQ_TRIGGER
	MQ_TRIGGER sample output screen
	Defining the trigger and associated initiation queue for the MQ_TRIGGER and the MQ_HANDLER programs
	For UNIX
	For OS/390

	GETERR(2033)

	Chapter 9 - MQSeries/MANTIS diagnostic considerations
	Diagnosing a MANTIS program error
	Dumping MQSeries Interface views
	Introduction to the “DUMP” value
	UNIX sample of a dumped MQCONNECT Interface
	Procedure for dumping the failing Interface layout
	System-specific dump file descriptions
	Dump length
	Overriding the dump length with DMPLENGTH

	Chapter 10 - General UNIX and OS/390 considerations
	Installation considerations
	UNIX
	OS/390

	MQCONNECT
	UNIX
	OS/390

	MQDISCONNECT
	UNIX
	OS/390

	MQGET
	UNIX
	OS/390

	MQPUT
	UNIX
	OS/390

	MQROLLBACK
	UNIX
	OS/390

	MQCOMMIT
	UNIX
	OS/390

	MQBEGIN
	UNIX
	OS/390

	MQEXIT
	UNIX
	OS/390

	MQTM
	UNIX
	OS/390

